Feature Extraction by Joint Robust Discriminant Analysis and Interclass Sparsity

Ahmad Khoder and Fadi Dornaika

Universidad del País Vasco Euskal Herriko Unibertsitatea

University of the Basque Country UPV/EHU, San Sebastian, Spain

CVPD

Computer Vision and Pattern Discovery Group

Overview

Introduction and Motivations Proposed Method Experiments and Results Conclusion

2

Introduction

Motivations

• Discriminant method aiming to learn a discriminative projection space for the data.

3

- Better data representation.
- Find a mapping that retains several interesting properties for learning tasks

Introduction

Related works

- Linear Discriminant Analysis (LDA)
- Principal Component Analysis
- inter-class Sparsity based discriminative least square regression (ICS DLSR) [Wen et al.,2018]
- Robust sparse LDA (RSLDA) [Wen, Fang et al., 2018]

Overview

Introduction and Motivations Proposed Method Experiments and Results Conclusion

5

Proposed Method

Properties

- Supervised Learning Method
- Robust and Discriminant
- The model provides feature ranking
- Provides Inter-class sparsity

Classical LDA

Fisher Criterion:

Difference form:

p is the eigenvector associated with the smallest eigenvalue of (Sw – μ Sb).

$$\mathbf{S}_{w} = \frac{1}{N} \sum_{i=1}^{C} \sum_{j=1}^{n_{i}} (\mathbf{x}_{j}^{i} - \mu_{i}) (\mathbf{x}_{j}^{i} - \mu_{i})^{T}$$
$$\mathbf{S}_{b} = \frac{1}{N} \sum_{i=1}^{C} n_{i} (\mu_{i} - \mu) (\mu_{i} - \mu)^{T}$$

 μ is a small positive constant. C is the number of classes N_i is the number of samples of the i-th class

Trace Form: $Tr \left(\mathbf{Q}^{T} \left(\mathbf{S}_{w} - \mu \, \mathbf{S}_{b} \right) \mathbf{Q} \right)$

Proposed Method

Proposed Method

 $f(\mathbf{Q}, \mathbf{E}, \mathbf{P}, \mathbf{F}) = Tr \left(\mathbf{Q}^T \mathbf{S} \mathbf{Q} \right) + \lambda_1 \| \mathbf{Q} \|_{2,1} + \lambda_2 \| \mathbf{E} \|_1 + \lambda_3 \sum \| \mathbf{F}_i \|_{2,1}$

9

Common sparse structure for the samples in the projected space

i=1

s.t. $\mathbf{F} = \mathbf{Q}^T \mathbf{X}$, $\mathbf{X} = \mathbf{P} \mathbf{Q}^T \mathbf{X} + \mathbf{E}$, and $\mathbf{P}^T \mathbf{P} = \mathbf{I}$ ICPR2021

Robust Discriminant Analysis with feature selection and Inter-class Sparsity (RDA_FSIS)

10

- Input: Data Samples: X; Data Labels; Regularization parameters: $\lambda_1, \lambda_2, \lambda_3$.
- **Output:** Transformation matrix **Q**; Reconstruction orthogonal matrix **P**; Error matrix **E**;
- Initialize Q, E = 0; $F = Q^T X$; $P = arg \min_{P} Tr(P^T SP)$; S_w, S_b obtained from LDA.
- Iteratively update Q, P, E and F (until convergence);

Overview

Introduction and Motivations
Proposed Method
Experiments and Results
Conclusion

11

Compared methods

12

- K nearest neighbors (KNN)
- Support Vector Machines (SVM)
- Linear Discriminant Analysis (LDA)
- Local Discriminant Embedding (LDE)
- Automatic Subspace Learning via Principal Coefficients Embedding (PCE) (unsupervised)
- Inter-class Sparsity based discriminative least square regression (ICS DLSR) [Wen et al.,2018]
- Robust sparse LDA (RSLDA) [Wen, Fang et al., 2018]

Datasets

Brief Datasets Description

Dataset	Туре	Num Samples	Num of features	Num of classes	Descriptor
Extended Yale B	Face	2414	1024	38	RAW-brightness
COIL 20	Objects	1440	177	20	LBP
LFWA	Face	3408	1024	141	RAW-brightness
MNIST	Digits	60,000	2048	10	Deep Features
PubFig83	Face	13,002	2048	83	HOG,LBP,GABOR

Method

Classification Tables

Table II: Mean classification accuracies (%) of different methods on the Extended Yale B dataset.

14

No	KNN	SVM	LDA	LDE	ELDE	PCE	SULDA	MPDA	ICS_DLSR	RSLDA	RDA_FSIS
10	69.8	73.85	82.32	79.92	85.85	86.39	84.61	83.67	86.56	86.79	88.27
15	75.2	80.02	86.76	83.77	89.30	89.23	88.72	86.82	89.53	89.93	91.73
20	80.24	85.79	90.7	88.44	93.07	92.19	91.66	90.38	93.14	93.59	95.11
25	82.24	89.03	92.17	90.43	94.09	93.35	92.14	91.79	94.50	94.92	96.23

Table IV: Mean classification accuracies (%) of different Table VI: Mean classification accuracies (%) of different
methods on the LFW-a dataset.methods on the LFW-a dataset.

No	KNN	SVM	LDA	LDE	PCE	ICS_DLSR	RSLDA	RDA_FSIS
5	9.90	12.72	20.51	9.98	9.44	22.56	24.70	28.07
6	10.57	13.61	25.28	10.49	10.26	25.72	28.42	30.98
7	11.06	14.70	28.62	11.24	10.98	29.04	31.50	33.28
8	11.35	15.72	32.42	11.71	11.73	31.92	32.48	35.80

Table V: Mean classification accuracies (%) of different methods on the MNIST dataset.

KNN	SVM	LDA	LDE	PCE	ICS_DLSR	RSLDA	RDA_FSIS
91 75	97 58	85 74	93.22	93 77	98.02	97.95	08 25
91.75	97.58	85.74	93.22	93.77	98.02	97.95	98.25

KNN	63.35
SVM	82.60
LDA	77.95
LDE	62.89
ELDE	65.88
PCE	50.40
SULDA	81.26
MPDA	67.89
ICS_DLSR	85.19
RSLDA	84.78
DeepLDA	44.35
Alexnet	64.00
Resnet50	90.40
RDA FSIS	84.84

Classification accuracy

15

T-SNE Visualization

78 Accuracy

Parameters Analysis

17

Convergence Analysis

Overview

Introduction and Motivations
Proposed Method
Experiments and Results
Oconclusion

18

Conclusion

- Supervised learning with Feature Selection and class sparsity algorithm is proposed
 - We propose an novel framework that provides an informative and discriminative linear embedding space.

19

- Framework that combines Linear discriminant analysis and inter-class sparsity.
- Implicitly performs feature ranking.

• The experiments show that the proposed method

- is able to outperform competing methods.
- Robust to noise.
- Future works will consider transforming this model into a deep model.

del País Vasco

Euskal Herriko Unibertsitatea

Thank you for your attention

Ahmad Khoder, PhD Candidate

ahmadkhoder10@hotmail.com