Predicting Online Video Advertising Effects with Multimodal Deep Learning

Jun Ikeda^{*}, Hiroyuki Seshime⁺, Xueting Wang^{*} and Toshihiko Yamasaki^{*}

* The University of Tokyo, Tokyo, Japan.
* Septeni Co., Ltd. Tokyo, Japan.

· Septem CO., Ltd. Tokyo, Ja

ICPR2020

Motivation

 Effective video ads are getting more important as the market is expanding.

Source: CyberAgent, Inc. (<u>https://www.cyberagent.co.jp/news/detail/id=24125</u>)

Purpose of this work

- Predict Crick Through Rate (CTR) of online video ads.
 - Assist ad designers creating more effective ads.
 - Enable designers to select the most effective ads beforehand.

Data

Online video ad data

- Actually used in a business by Septeni Co., Ltd.
- Distributed on Facebook and Instagram since January 2018 until December 2019.
- Consist of ad videos, 16 kinds of metadata, and 5 kinds of text data.

Key	Value	Key	Value	
Month	10	Target age min	13	
Genre	Game	Target age max	65	
Sub genre	RPG	Target cost	4500000	
web/app	Арр	Title	The world of "Seven Deadly Sins" …	

The partial example of metadata and text data.

Dataset

- Data split into train, val and test dataset.
 - The ads in the validation and test datasets should be newer than those in the training dataset.
- Several ads share the same video.
 - Ads with the same video content shouldn't be separated between datasets.

The numbers of data

Related study

- Prediction of TV commercial impressions. [Nakamura et al.]
 - Predict four impressional and emotional effects of 15s TV commercials, using video, metadata, sound and cast data.

Problem of Nakamura's model

 Differences between research targets, TV commercials and online video ads.

Differences							
	Nakamura et al	nura et al Ours					
Data	TV commercials	Online video ads					
Kinds of data	Video, metadata, sound, cast data	Video, metadata, text					
Data features		Many similar data Several numerical metadata					

Proposed method

- Improve metadata feature extractor.
- Suppress overfitting using batch normalization and dropout.
- Input embedded text data.

Results

• Achieve a higher correlation coefficient (0.695) than Nakamura et al. (0.487).

Nakamura et al.

Results

 Ablation studies demonstrate the contribution of our proposals.

	Input		Meta feature extractor	Suppress overfitting	Metrics		
Method	Video	Meta	Text	Improved	BN & Dropout	RMSE↓	RÎ
[Nakamura et al.]	\checkmark	\checkmark				0.130	0.487
Ours(without improved extractor)	√	\checkmark	√		\checkmark	0.126	0.540
Ours(without text input)	√	\checkmark		√	\checkmark	0.109	0.684
Ours(without BN & Dropout)	√	\checkmark	\checkmark	√		0.121	0.598
Ours	√	\checkmark	\checkmark	\checkmark	\checkmark	0.107	0.695

Results

Conclusion

Purpose Predict CTR of online video ads.

Related Study

Predict effects of TV commercials, which have different features of data from online video ads.

Proposed method

Improve metadata feature extractor.

Suppress overfitting.

Input text data embedded by Doc2Vec.

Results

Achieve a correlation coefficient as high as 0.695.