Smart Inference for Multidigit Convolutional Neural Network based Barcode Decoding

Thao Do, Yalew Tolcha, Taejoon Jun, Daeyoung, Kim - KAIST

Outline

- Barcode Decode & Its Problems
- Background Information
- Proposed Method
- Experiments
- Conclusion & Limitation

Barcode Decode & Its Problems

Target ? (Focus on 1D barcode)

Decode cropped barcode images

 \rightarrow 7 501 031 311 309

- Traditional laser-beam approaches
- Conventional camera-based methods

Traditional laser-beam approaches

- Overheating
- Consume more energy
- Very short range

Source: https://encyclopedia2.thefreedictionary.com/barcode+scanner

Conventional camera-

based methods

Apply various **static** filter functions to turn image to *good* bitmap image \rightarrow **sensitive** to **cripple barcode** (*dark*, *occlusion*, *wrinkle*, *non-flat plane*, over light, blurry and ...).

 \rightarrow Why not try CNN? Actually there're work did it but with some limitations lead to <u>low</u> performance!

Background Information

- Each barcode family has own composition and decoding rule.
- But most of them has *checksum* to self-validate

 $(D[L-0] * \mathbf{1} + D[L-1] * \mathbf{3} + D[L-2] * \mathbf{1} + D[L-3] * \mathbf{3} + \dots$

 $D[L-2i] * \mathbf{1} + D[L-2i-1] * \mathbf{3} + \dots D[1] * \mathbf{1} \text{ if } L \mod 2 == 0 \text{ else } * \mathbf{3}) \mod 10 = 0$

(digit1*1 +digit2*3 + digit3*1 + digit4*3 + digit5*1 + digit6*3 + digit7*1 +digit8*3 + digit9*1 + digit10*3 + digit11*1 + digit12*3 + digit13*1) % 10 = 0

(7*1 + 5*3 + 0*1 + 1*3 + 0*1 + 3*3 + 1*1 + 3*3 + 1*1 + 1*3 + 3*1 + 0*3 + 9*1) % 10 = 0

Proposed Method – Overview

Based method proposed by Fred et al[1] inspired by Goodfellow et al [2]

Inspiration

"The predicted value with the **highest probability** is *not always* the **correct value**"

Smart Inference (Algo 1)

1/ Calculate the differences (**gap**) between the 2 highest probabilities of each digit.

2/ Sort ascending the gaps, choose **MaxIter** *smallest* gaps.

(bigger gap ~ more confidence of the model on the outcome of highest probability outcome, less confidence of its for outcome of the 2nd highest,

smaller gap ~ higher chance the outcome with 2^{nd} highest probability is actually the correct of the digit at a position)

3/ Create all combinations from those gaps, sort the list of all combinations in the **descending** order of sum of probabilities.

4/ Test one by one and stop at the *checksum equation-satisfied* combination, this is the predicted sequence; if no combination satisfy, return no barcode! Algorithm 1: Modified Prediction Algorithm (MPA)Input: Trained model (Net), Image (Img), MaxInterOutput : BarcodeCompute logit[][] using Net given Img;for $k \leftarrow 1$ to L do $Prob^k[] \leftarrow softmax(logit^k[]);$ sort $Prob^k[]$ desc;append $Prob^k[0].val - Prob^k[1].val$ to Gap;append k to $Gap_pos;$ $digit^k \leftarrow Prob^k[0].index;$

end

```
sort Gap_pos asc with Gap;
init\_sequence \leftarrow join(digit[]);
append init_sequence to seq_list;
for i \leftarrow 0 to (MaxIter - 1) do
   k \leftarrow Gap\_pos[i];
    second \leftarrow Prob^{k}[1].index;
   for each seq \in seq\_list do
       new\_seq \leftarrow modify seq at position k with second;
       append new_seq to new_seq_list;
   end
   append new_seq_list elements to seq_list;
end
sort seq_list desc with sum_probability(seq_list);
for each seq \in seq\_list do
   if checksum(seq) then
       return seq;
   end
end
return null
```

Smart Informa			
Smart Interence	Algorithm 2: MPA with Augment		
+ test-time augmentation	Input : Trained model (Net), Image		
(Algo 2)	(Img), MaxInter		
Idea?	Output: Barcode append rotate(Img, [0°, 90°, 180°, 270°])		
 Human also turn their heads a bit to recognize things 			
sometimes	to $img_list;$		
	for each $img \in img_list$ do		
 Why [0°, 90°, 180°, 270°]? Simple, less calculation, No losing more information 	$seq \leftarrow \text{Predict by } \textbf{Algo_1}(\text{Net}, img);$ if seq not null then return seq;		
 Why stop at first satisfied sequence? Fast Empirical experiments show it's also effective 	end end return null		
Empirical experiments show - it's also effective			

Smart Inference

+ test-time augmentation

+ voting (Algo 3)

Idea?

 Pick the sequence which is more consistently predicted by variant inputs

(No matter which rotation applied, barcode must be the same!)

```
Algorithm 3: MPA with Augment and
Vote
  Input : Trained model (Net), Image
             (Img), MaxInter
  Output: Barcode
  append rotate(Img, [0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}])
   to img_list;
  for each img \in img\_list do
      seq \leftarrow \text{Predict by } Algo_1(\text{Net}, img);
      append seq to seq_list
  end
  if seq_list not empty then
      frequency(seq_list);
      voted\_seq \leftarrow seq with highest count;
      return voted_seq;
  else
      return null;
  end
```

Experiments

- Dataset (Real captured)

Real dataset with variety of hard conditions:

- 2500 barcode images
- 2000 validation
- 500 for train \rightarrow augmented to 20,000 samples

Comprised of:

- 1055 from MuensterDB [3]
- 408 Zamberletti et al [4]
- 1037 our collection
- From 5 supermarket (3 countries)
- Various type: food, books, kitchenware, clothes, stationary.
- Various material: metal cans, wine bottles, food plastic bags, cardboard box.
- Various light: florescent, incandescent bulb, morning and afternoon.
- Auto-focus off, hand shaking, long distance, obscured by fingers, wrinkled, distort.
- We double checked, draw box, labelled.

Experiments

- Dataset (Synthesized)

Synthetics set:

 250,000 samples for various conditions

Total: 270,000 for training.

Condition(s)	# of samples
norm	30000
dark	30000
occluded	20000
occluded+dark	20000
Rotated, Perspective Transformed	20000
RPT+dark	20000
Cylindered, Curvy Warped	20000
CCW+dark	20000
occluded + RPT	5000
blur	5000
RPT+blur	5000
CCW+blur	5000
upside down	6000
upside down+dark	6000
upside down+blur	6000
upside down+CCW	6000
upside down+occluded	6000
heavy noise+rotated	2000
$exposed{+}occluded{+}RPT{+}CCW$	6000
${\rm dark+occluded+RPT+CCW}$	6000
occluded + RPT + CCW	6000

Experimental setups

- Input size: 285x285, batch size: 32
- The training processes were made using NVIDIA Titan RTX with 24 GB VRAM.
- Evaluation experiments were conducted on desktop using Intel Core i9 9900KF processor, 32GB RAM
- Low-computational experiments were run on a NVIDIA Jetson Nano board with CUDA-enabled using NVIDIA TensorRT models (converted from PyTorch).

Experimental results

TABLE II TOOL & MODELS WITHOUT MPA PERFORMANCES

Model	Accuracy	CPU (ms)	# of params (M)
Zxing	58.25%	7.65	NA
Dynamsoft	93.10%	978.8	NA
Google API	82.45%	211.9	NA
Cognex	84.60%	111.9	NA
ResNet50	93.35%	66.5	99.5
MobiletNetV2	72.25%	32.4	15.7
MobiletNetV2_kd	83.45%	32.4	15.7
DenseNet169	84.90%	75.65	30
ResNet34	88.70%	38.3	40.7
ResNet34_kd	89.20%	38.3	40.7
Fridborn-similar	31.85%	104.9	403.3
Non-residual	80.80%	103.2	78.5

TABLE III USING MPA PERFORMANCES

	Model	nonMPA	max=1	max=2	max=3	max=4
	ResNet50	0.9335	0.942	0.9435	0.9445	0.9445
acy	MobiletNetV2	0.8345	0.8595	0.869	0.868	0.8645
urŝ	DenseNet169	0.849	0.8645	0.876	0.8775	0.874
Acc	ResNet34	0.892	0.9075	0.911	0.912	0.911
~	Non-residual	0.808	0.8295	0.844	0.8455	0.841
s	ResNet50	133	31	48	77	106
ror	MobiletNetV2	331	59	106	164	241
en	DenseNet169	302	54	105	176	230
of	ResNet34	216	41	73	116	157
#	Non-residual	384	55	104	197	285

TABLE IV USING MPA & AUGMENTATION PERFORMANCES

	Model	nonMPA	max=1	max=2	max=3	max=4
	ResNet50	0.9335	0.958	0.956	0.951	0.946
acy	MobiletNetV2	0.8345	0.906	0.8975	0.8855	0.8705
m	DenseNet169	0.849	0.9155	0.9075	0.8915	0.877
Acc	ResNet34	0.892	0.9375	0.9315	0.9235	0.916
4	Non-residual	0.808	0.89	0.879	0.861	0.8445
s	ResNet50	133	56	73	95	108
ror	MobiletNetV2	331	121	182	225	259
en	DenseNet169	302	113	172	216	246
# of	ResNet34	216	95	129	152	168
	Non-residual	384	145	212	274	311

TABLE V USING MPA & AUGMENTATION WITH VOTING PERFORMANCES

	Model	nonMPA	max=1	max=2	max=3	max=4
	ResNet50	0.9335	0.9585	0.9585	0.9525	0.95
acy	MobiletNetV2	0.8345	0.9085	0.906	0.899	0.8945
ura	DenseNet169	0.849	0.9125	0.8985	0.8785	0.8545
Acc	ResNet34	0.892	0.933	0.93	0.9215	0.911
4	Non-residual	0.808	0.8855	0.8735	0.853	0.8355
s	ResNet50	133	55	68	92	100
ror	MobiletNetV2	331	116	165	198	211
en	DenseNet169	302	119	190	242	291
of	ResNet34	216	104	132	156	178
#	Non-residual	384	154	223	290	329

Notes

■ Real-collected dataset cause too big loss for training from scratch → using transfer learning after the model converged a bit on synthesized data.

Conclusion & Limitation

Contribution

- Smart Inference in prediction phase really boosted the accuracy of the multi-digit CNN models.
- Open EAN13-decoding dataset of 2500 real-collected cropped images under various wild practical conditions.
- Minimized the model to work well on a small board (Jetson Nano) to demonstrate its applicability in practical use using Knowledge Distillation.

Limitation

- Still need the component to localize barcode regions
- Only work with fixed maximum length barcode families \rightarrow Too long Code39 type can't be used.

References

- [1] Reading barcodes with neural networks, 2017, ISRN: LiTH-ISY-EX--17/5102--SE
- [2] Ian J Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, and Vinay Shet. Multi-digit number recognition from street view imagery using deep convolutional neural networks. arXiv, preprint arXiv:1312.6082, 2013.
- [3] Steffen Wachenfeld, Sebastian Terlunen, and Xiaoyi Jiang. Robust recognition of 1-d barcodes using camera phones. In 2008 19th International Conference on Pattern Recognition, pages 1–4. IEEE, 2008.
- [4] Alessandro Zamberletti, Ignazio Gallo, Moreno Carullo, and Elisabetta Binaghi. Decoding 1-d barcode from degraded images using a neural network. In International Conference on Computer Vision, Imaging and Computer Graphics, pages 45–55. Springer, 2010.

Thank for listening

And stay safe