## Cross-People Mobile-Phone based Airwriting Character Recognition

### Yunzhe Li, Hui Zheng, He Zhu, Haojun Ai, Xiaowei Dong

{liyunzhe, zhenghui\_cs, zhuhe\_cs, aihj, xwdong}@whu.edu.cn

December 7, 2020

Yunzhe Li, Hui Zheng, **He Zhu**, Haojun Ai, Xiaowei Dong (WHU)

December 7, 2020 1 / 10

When you are walking, suddenly come up with a wonderful idea. Would you like to ...

- Go back to the office, find the draft paper and pen and write it down?
- Turn on the phone, enter the password, find the notepad from many APPs, and finally type and record?
- Pick up the phone and write directly in the air?

Airwriting can make the third approach a reality!

Introduction

# Airwriting

- Airwriting refers to writing letters with hand or finger movements in a free space.
- Airwriting is especially useful for user interfaces that do not allow the user to type on a keyboard or write on a trackpad or touchscreen, or for text input for smart system control, among many applications.



Figure: Airwriting

Yunzhe Li, Hui Zheng, **He Zhu**, Haojun Ai, Xiaowei Dong (WHU)

## Challenges in Mobile-Phone based Airwriting

The machine learning method is very effective to solve the Airwriting problem, but there are still several challenges:

- Non-IID: Due to different people's habits and equipment, the data of different people do not obey the same distribution -> Fine-tuning from the base model
- Small Sample: Because there are many possible situations, the data needs to be collected by the user personally, and the user will be tired after collecting it for a period of time, it is difficult to obtain the data -> Transfer Learning

System

### Data preprocessing

- Define the square of acceleration as the energy
- Segmentation based on writing energy: changes in energy are more sensitive at the beginning and end of writing numbers



Figure: Energy of acceleration

System

### Network

- CNNs are able to learn local higher-level features from spatial data
- RNNs are specialized for sequential modeling
- AdaBNs can be used for knowledge transfer



#### Figure: CNN-BLSTM-AdaBN

Yunzhe Li, Hui Zheng, **He Zhu**, Haojun Ai, Xiaowei Dong (WHU)

System

### $\mathsf{AdaBN}$

- Perform batch normalization for training domain and test domain
- Domain specific normalization mitigates the domain shift issue



Figure: AdnBN

Evaluation

## Base Model

- Training using more than 20000 pieces of data
- Achieve more than 99% accuracy



Figure: Confusion matrix of base model

Yunzhe Li, Hui Zheng, **He Zhu**, Haojun Ai, Xiaowei Dong (WHU)

Evaluation

### Migrate to small datasets

- The size of the target data set is only 0.003% of the base model training set
- Our method is able to improve the performance of the model by 10% on average

| Target | Base Model | Transfer | Increase |
|--------|------------|----------|----------|
| 2      | 96.35%     | 99.14%   | 2.79%    |
| 3      | 97.64%     | 99.23%   | 1.59%    |
| 4      | 68.33%     | 83.33%   | 15%      |
| 5      | 49.67%     | 68.67%   | 19%      |
| 6      | 52.67%     | 61.02%   | 8.35%    |
| 7      | 67%        | 75.92%   | 8.92%    |
| 8      | 62.33%     | 83.33%   | 21%      |
| 9      | 68%        | 75.45%   | 7.45%    |
| 10     | 75.59%     | 81.2%    | 5.61%    |

#### Table: Performance

Yunzhe Li, Hui Zheng, **He Zhu**, Haojun Ai, Xiaowei Dong (WHU)

December 7, 2020 9/10

- We build an Airwriting recognition system on mobile phone.
- Using enough data for training, our model can achieve an accuracy of over 99%.
- When the new scene training set is only 0.003% of the base model, we can increase the performance of the base model in the corresponding scene by an average of 10%.