

The color out of space: learning self-supervised representations for Earth Observation imagery

Stefano Vincenzi*, Angelo Porrello*, Pietro Buzzega*, Marco Cipriano*, Pietro Fronte‡, Roberto Cucco‡,

Carla Ippoliti†, Annamaria Conte†, Simone Calderara*

*University of Modena and Reggio Emilia, Italy

†Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G.Caporale', Teramo, Italy

‡Progressive Systems Srl, Frascati – Rome, Italy

Introduction

Remote Sensing applications:

- Disaster prevention;
- Climate change;
- Vector-borne disease.

They require a higher number of satellitary images.

- ✓ Wide increase in satellite missions;
- **Lack of large annotated datasets,** acquiring ground truth data is expensive and requires expertise.

Current Approaches

- models pre-trained on the ImageNet dataset
 - **k limited** only on the tasks involving RGB images;
 - × satellitary images represent a different domain.

Novel approaches tailored for satellitary images

- ➢ In-domain representation learning¹ involve pre-training on a different remote sensing dataset;
- \succ Tile2Vec², rely on the assumption that spatially close tiles share similar information.

¹ M. Neumann et al. In-domain representation learning for remote sensing. arXiv preprint arXiv:1911.06721, 2019. ² N. Jean et al. Tile2vec: Unsupervised representation learning for spatially distributed data. In AAAI, 2019

Our Approach

In this work, we propose:

- ✓ to learn meaningful representations from satellite images, leveraging its high-dimensionality spectral bands to reconstruct the color channels (colorization);
- ✓ to employ the learned representations on two different tasks: land-cover classification and prediction of the presence/absence of the West Nile Virus;
- ✓ an **ensemble model** between spectral and color channels.

Dataset

▶ Images from satellites **Sentinel-2A** and **Sentinel-2B**, handled by ESA.

BigEarthNet

- Novel large-scale dataset³ collecting **590 326 tiles**;
- Each example comprises of 12 bands (RGB included) and multiple land-cover classes as ground truth;
- > We adopt a class nomenclature involving 19 classes⁴;
- We discards 70 987 patches that are fully covered by clouds and snow.

	Bands	Wavelength (μm)	Res (m)
B_1	Coastal Aerosol	0.443	60
$B_{2,3,4}$	BGR channels	0.490	10
B_5	Vegetation Red Edge	0.705	20
B_6	Vegetation Red Edge	0.740	20
B_7	Vegetation Red Edge	0.783	20
B_8	NIR	0.842	10
B_{8A}	Vegetation Red Edge	0.865	20
B_9	Water Vapour	0.945	60
B_{10}	SWIR (Cirrus)	1.375	60
B_{11}	SWIR	1.610	20
B_{12}	SWIR	2.190	20

³G. Sumbul et al. Bigearthnet: A large-scale benchmark archive for remote sensing image understanding. In IGARSS, 2019. ⁴G. Sumbul et al. Bigearthnet deep learning models with a new class-nomenclature for remote sensing image understanding. arXiv preprint arXiv:2001.06372, 2020.

Dataset

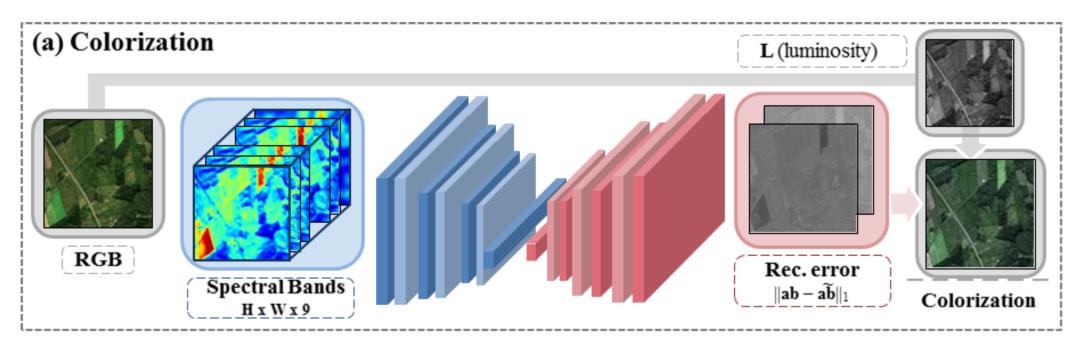
West Nile Disease Dataset (WND)

➢ a mosquito-borne disease caused by West Nile virus (WNV);

- Sentinel 2A/2B data paired with ground truth WND data;
- WND dataset for the year 2018 comprises of 1 488 distinct cases, divided into 962 negatives and 526 positives;
- Each case comes with a variable number of Sentinel-2 patches, thus leading to 18 684 spectral images in total.

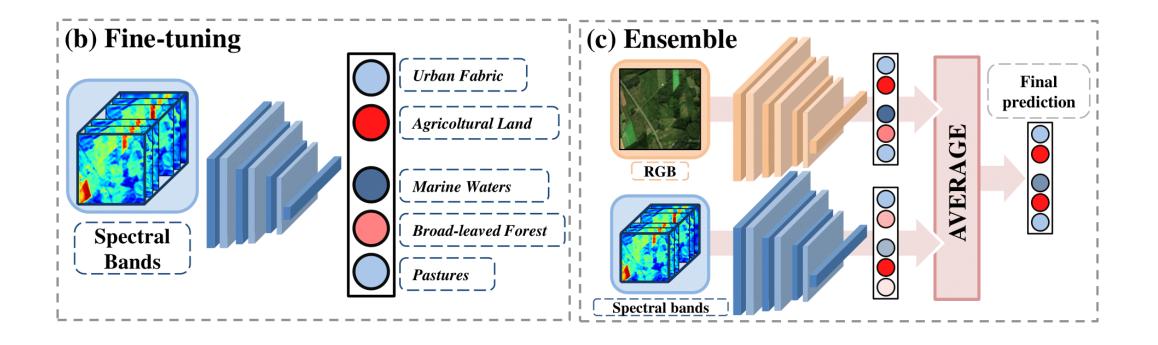
Model

- Our main goal consists in finding a good initialization for the network, such that it can later capture meaningful patterns even in presence of a few labeled data.
- ➢ We devises a two-stage procedure:
 - a) Self-supervised Colorization;
 - b) Fine-tuning on Land-Cover classification and WND prediction.



Model

- Once the encoder-decoder has been trained, we exploit only the encoder as a pre-trained feature extractor, adding a linear layer to maps the bottleneck features to the classification output space.
- The ensemble (c) is formed by two independent branches taking the RGB channels and the spectral bands as input respectively.



Land-Cover Classification

- The results are expresses in terms of Mean-Average-Precision (mAP);
- We considered different dataset sizes, ranging from 5,000 to 519,000 samples;
- Both ImageNet and colorization features lead to remarkable improvements;
- We assessed an ensemble model, which brought to better results in all different ranges;
- Finally, in the last table, we compare our best model with various baseline⁴.

Input	pre-training	1k	5k	10k	50k	Full
RGB	from scratch	.486	.608	.645	.744	.851
RGB	ImageNet	.620	.695	.726	.786	.879
Spectral	from scratch	.555	.667	.711	.767	.866
Spectral	Color. (our)	.622	.730	.760	.793	.860

Input	pre-training	1k	5k	10k	50k	Full
RGB	ImageNet	.620	.695	.726	.786	.879
Spectral	Colorization	.622	.730	.760	.793	.860
Ensemble	Color.+ImageNet	.656	.751	.778	.823	.896

Method	pr.	rc.	F1
K-Branch CNN	.716	.789	.727
VGG19	.798	.767	.759
ResNet-50	.813	.774	.771
ResNet-101	.801	.774	.764
ResNet-152	.817	.762	.765
Ensemble (our)	.843	.781	.811

⁴G. Sumbul et al. Bigearthnet deep learning models with a new class-nomenclature for remote sensing image understanding. arXiv preprint arXiv:2001.06372, 2020.

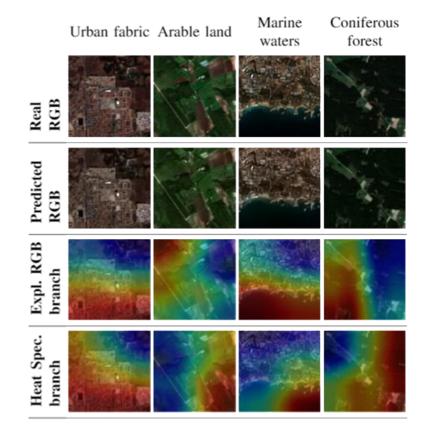
West Nile Disease

- We define a simple baseline (random classifier) that computes predictions by randomly guessing from the class-prior distribution of the training set;
- All the networks we trained exceed random guessing, hence suggesting they effectively learned meaningful features;
- The ensemble model surpasses networks based on a single modality by a consistent margin.

Input	pre-training	acc.	pr.	rc.	F1
Random classifier	-	.503	.391	.395	.393
RGB RGB	from scratch ImageNet	.652 .865	.542 .819	.941 .857	.688 .838
$\begin{array}{c} B_{1,8A,11,12} \\ B_{1,8A,11,12} \end{array}$	from scratch Colorization	.756 .852	.662 .823	.817 .811	.732 .817
Ensemble	Color.+ImageNet	.880	.855	.850	.852

Why does the ensemble work better?

- diversity among individual learners;
- GradCam to assess whether the two branches look for different portions within their inputs.
- The third and fourth rows of the figure highlight the input regions that have been considered important for predicting the target category.
- The regions highlighted from the two branches visually diverge, confirming the weak correlation between their representations.



- > In this work, we propose a self-supervised learning approach for satellitary images;
- > We prepend a colorization phase to a fine-tuning one on downstream tasks;
- We observe that the initialization we devised leads to remarkable results, exceeding the baselines especially in presence of scarce labeled data;
- ➢ We qualitatively observe that representations learned through colorization are different from the ones driven by the RGB channels. Based on this finding, we set up an ensemble model that achieves the highest results.

Thanks!

Source code: https://github.com/stevinc/TheColorOutOfSpace