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Background

Style Transfer Task:

« Domain transfer
« Pix2pix [1]
» CycleGAN [2]

* Arbitrary style transfer
» Optimization-based [3]
« AdalN [4]
« WCT [5]

1. Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros, "Image-to-Image Translation with Conditional Adversarial Nets", CVPR2017.

2. Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros, "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks", ICCV2017.
3. Leon A. Gatys, Alexander S. Ecker, Matthias Bethge, "Image Style Transfer Using Convolutional Neural Networks", CVPR2016.

4. Xun Huang, Serge Belongie, "Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization", ICCV2017.

5. Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, Ming-Hsuan Yang, "Universal Style Transfer via Feature Transforms", NIPS2017.
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* Few reasearches and dataset focu on Chinese paintings
transfer task.

* Sub-style task.

* CycleGAN has "over-grayscale" problems.
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* Few reasearches and dataset focu on Chinese paintings
transfer task.
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Sub-style task.

Chinese paintings
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* CycleGAN has "over-grayscale" problems.
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« Haar wavelet
e AWNet
* Results




Haar wavelet

Chinese painting

Fig. 4: Haar transform via convolutigd operation.

Fig. 2: (a) [The "over
'Xieyi' inforynation, (H
the image enhanceme

style information

(b) REsultsfof haar wavelet transform

orayscale’ results of CycleGAN, i.e lack of
) The results of haar wavelet transform, where
t isfused for better display.
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Fig. 3: Overview of our AWNet structure. Our model consists of two generators and discriminators. Each generator has 9 residual blocks
while the discriminator compose of full convolutional layers. We feed photos and Chinese paintings to generators and discriminators to
determine whether the output of generator is true or not. In order to capture the local details, we introduce a local enhancement stream and
multi-scale self-attention modules to fuse them.
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High-level Transform stream
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Local Enhancement stream
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Attention modules Fig. 5: Our attention module. The input of attention module is multi-
channel feature, we can obtain a 1D vector after passing by several
comvolution and avgpooling layers and obtain the final feature via
multiplying by input feature.




* Results

Fig. 9: Our results compared with classic style transfer algorithms. AdalN losses some content information, Gatys et.al generates blurry
results, Style-Swap looks too dark and WCT’s results in fragments. Moreover, none of them can reflect "Xieyi" prospect. Our method achieves
more attractive results compared with others.

Qualitative Evaluation

Evaluation on P2ADataset
Methods  I—seTni+ PSNR T
AdalN 0.27 10.07
Gatys et.al 0.34 9.14
Style-Swap 0.36 13.08
WCT 0.18 8.67
Ours 0.42 11.04

TABLE I: Quantitative comparisons between ours and and the preva-
lent style transferring methods.
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Fig. 10: Our user study. Horizontal axis shows different methods
while vertical axis represents the votes on "Gongbi’ and "Xieyi'.
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Conclusion

contribures:

»  We propose a novel AWNet for photos-Chinese paintings transferring task,
which can capture high-level information and local prospects simultaneously.

» To better portray the local prospects, we introduce a multi-scale self-attention
mechanism to select details scattered in features of each layer.

« We propose a new large dataset, named P2ADataset contains unpaired
photos and traditional Chinese paintings for phito-Chinese painting
transferring task.

Future plan:

« Some failure cases
* High resolution

distorted & "ghosting"

graps
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