

# Recursive Recognition of Offline Handwritten Mathematical Expressions

Marco Cotogni

Claudio Cusano

Antonino Nocera

marco.cotogni01@universitadipavia.it, claudio.cusano@unipv.it, antonino.nocera@unipv.it

25<sup>th</sup> International Conference on Pattern Recognition

## Recognition of Offline Handwritten Math Expressions

Given an image depicting a mathematical expression decode it in a symbolic representation (e.g. in the  $\[MTEX]$  language)



The trajectory of the pen is not available (offline recognition)

More challenging that conventional OCR!

- non-sequential spatial layout (e.g. fractions)
- little prior information encoded in language models, and dictionaries

### Recursive recognition

Our solution is designed to enable fast processing even on devices with limited computational resources (e.g. mobile devices)



- a CNN extracts image features
- a RNN translates features into symbols
- a deconvolutional module is used to identify complex subexpressions that are processed recursively

#### Convolutional module

| Operation                                                                                                                                                                                                                                                                    | Param.                                             | Output size                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input<br>Conv. 7 $\times$ 7, st. 1 $\times$ 1<br>Batch Norm. + ReLU<br>Max Pooling 4 $\times$ 4                                                                                                                                                                              | 1600<br>64                                         | $W \times 160 \times 1$ $W \times 160 \times 32$ $W \times 160 \times 32$ $(W/4) \times 40 \times 32$                                                                                                                     |
| $\begin{array}{l} {\sf Conv.\ 3\times3,\ st.\ 1\times1}\\ {\sf Batch\ Norm.\ +\ ReLU}\\ {\sf Conv.\ 3\times3,\ st.\ 1\times1}\\ {\sf Batch\ Norm.\ +\ ReLU}\\ {\sf Conv.\ 3\times3,\ st.\ 2\times2}\\ {\sf Batch\ Norm.\ +\ ReLU}\\ \end{array}$                             | 18 496<br>128<br>36 928<br>128<br>36 928<br>128    | $\begin{array}{c} (W/4) \times 40 \times 64 \\ (W/8) \times 20 \times 64 \\ (W/8) \times 20 \times 64 \end{array}$                 |
| $\begin{array}{l} {\sf Conv.\ 3\times3,\ st.\ 1\times1}\\ {\sf Batch\ Norm.\ +\ ReLU}\\ {\sf Conv.\ 3\times3,\ st.\ 1\times1}\\ {\sf Batch\ Norm.\ +\ ReLU}\\ {\sf Conv.\ 3\times3,\ st.\ 1\times2}\\ {\sf Batch\ Norm.\ +\ ReLU}\\ {\sf Batch\ Norm.\ +\ ReLU} \end{array}$ | 73 856<br>256<br>147 584<br>256<br>147 584<br>256  | $\begin{array}{l} (W/8)\times 20\times 128\\ (W/8)\times 20\times 128\\ (W/8)\times 20\times 128\\ (W/8)\times 20\times 128\\ (W/8)\times 10\times 128\\ (W/8)\times 10\times 128\\ (W/8)\times 10\times 128 \end{array}$ |
| $\begin{array}{l} {\sf Conv.\ 3\times3,\ st.\ 1\times1}\\ {\sf Batch\ Norm.\ +\ ReLU}\\ {\sf Conv.\ 3\times3,\ st.\ 1\times1}\\ {\sf Batch\ Norm.\ +\ ReLU}\\ {\sf Conv.\ 3\times3,\ st.\ 1\times2}\\ {\sf Batch\ Norm.\ +\ ReLU} \end{array}$                               | 295 168<br>512<br>590 080<br>512<br>590 080<br>512 | $\begin{array}{c} (W/8) \times 10 \times 256 \\ (W/8) \times 5 \times 256 \\ (W/8) \times 5 \times 256 \end{array}$             |

| Operation                                                 | Param.              | Output size                                                                                                                               |
|-----------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Input<br>Max pool 1 × 5<br>LSTM cell<br>Linear<br>Softmax | 5 251 072<br>10 250 | $\begin{array}{c} (W/8) \times 5 \times 256 \\ (W/8) \times 256 \\ (W/8) \times 1024 \\ (W/8) \times 100 \\ (W/8) \times 100 \end{array}$ |

Recurrent module

#### Deconvolutional module

| Operation                                                                                                                          | Param.                 | Output size                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input<br>Conv. 3 × 3, st. 1 × 1<br>Batch Norm. + ReLU<br>Upsampling 2 × 8<br>Conv. 3 × 3, st. 1 × 1<br>Sigmoid<br>Upsampling 4 × 4 | 295 040<br>256<br>2306 | $\begin{array}{c} (W/8)\times5\times256\\ (W/8)\times5\times128\\ (W/8)\times5\times128\\ (W/8)\times5\times128\\ (W/4)\times40\times128\\ (W/4)\times40\times2\\ (W/4)\times40\times2\\ (W/4)\times40\times2\\ W/4)\times40\times2\\ W\times160\times2 \end{array}$ |

End-to-end trainable with off-the-shelf algorithms for the minimization of the Connectionist Temporal Classification loss (CTC)

### Data

We collected images of 9100 expressions including 99 different symbols and tokens

- the digits 0...9
- the English letters a...z and A...Z
- the Greek letters  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\varepsilon$ ,  $\phi$ ,  $\lambda$ ,  $\mu$  and  $\pi$ ;
- the arithmetic operators +, -,  $\times,$   $\cdot$  and  $\div$
- the relational operators <, >,  $\leqslant, \geqslant, =$
- the parenthesis (, ), [, ] and  $\mid$
- the punctuation symbols . , ; and :
- the integral symbol ∫
- the  $\[AT_{EX}\]$  tokens  $\frac, \sqrt, \_$  and ^

8300 training images, 400 validation, 400 test

Expressions were randomly generated according to a grammar and handwritten by more than 100 volunteers

| $0.1.1 + y + 3q^2$ | $\frac{z}{z} = \frac{ b  - 3}{k \cdot B}$ | $\frac{P}{-6} \ge \frac{Y}{F}$                                                                                   | +L=V×Z-N                                                             |
|--------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| W: 1031            | $\left[\frac{y+k+x}{z-1-b+k}\right]$      | b. D+A-1ICN                                                                                                      | $1+r \gg \sqrt{(t-s\cdot E)}$                                        |
| 3;83:528           | $3 > \chi + 6 + \frac{5}{\wp}$            | $GB \leq \int_{m}^{N} 89$                                                                                        | [Ja: [67-[8335]]                                                     |
| yA+b-y+b           | n_F  = I-y= c-1                           | Y-2-K                                                                                                            | 94<br>CB + 967                                                       |
| p. i.              | 8 × ≪√(d)                                 | $-4 \div \int_{Q}^{2} A + c$                                                                                     | IAI-Ac                                                               |
| 5-:1+x.3           | h÷M:a:40-X-2B+Y                           | $\sqrt[6]{A - \frac{q}{5 + (14 + NX] + [BX]}}$                                                                   | $\sqrt[L]{2 \cdot \frac{2 \times [28 - (9)]}{[92] \div e \times X}}$ |
| ez: Txd            | Vm.5-2+03:3                               | J [8.[i-1A]]                                                                                                     | [9]+5 < VA                                                           |
| $\int_{1}^{x} 4-m$ | X+BxZd                                    | $\iint_{33} 84 \cdot \sqrt{6\chi \div \frac{\delta \sqrt{c} - ( 3 \times \chi  \times M\xi)}{\delta - \varphi}}$ | (h+i):m-z<3×K                                                        |

We obtained an average Levenshtein distance of 0.691 between expected and output sequences of symbols

| Category        | Accuracy (%) |
|-----------------|--------------|
| Digits          | 90.7         |
| English letters | 95.2         |
| Greek letters   | 95.0         |
| Operators       | 96.7         |
| Parentheses     | 94.6         |
| Punctuation     | 96.4         |
| Fractions       | 98.4         |
| Roots           | 94.7         |
| Integrals       | 100.0        |
| Subscripts      | 96.2         |
| Superscripts    | 84.2         |

Errors are most common for bad-quality images and for expressions written in a style that is generally hard to read



We presented a method for the recognition of handwritten mathematical expressions

Thanks to its recursive definition, the method is fast and accurate

It allows to recognize complex expressions in a resonable time even when computational resources are scarce, which is the case of smartphones and other mobile devices