## UNIVERSITÀ DI PAVIA

# Recursive Recognition of Offline Handwritten Mathematical Expressions 

Marco Cotogni Claudio Cusano Antonino Nocera

marco.cotogni01@universitadipavia.it, claudio.cusano@unipv.it, antonino.nocera@unipv.it
$25^{\text {th }}$ International Conference on Pattern Recognition

## Recognition of Offline Handwritten Math Expressions

Given an image depicting a mathematical expression decode it in a symbolic representation (e.g. in the $L A T^{2} \mathrm{E}_{\mathrm{E}}$ language)


The trajectory of the pen is not available (offline recognition)
More challenging that conventional OCR!

- non-sequential spatial layout (e.g. fractions)
- little prior information encoded in language models, and dictionaries


## Recursive recognition

Our solution is designed to enable fast processing even on devices with limited computational resources (e.g. mobile devices)


- a CNN extracts image features
- a RNN translates features into symbols
- a deconvolutional module is used to identify complex subexpressions that are processed recursively

Convolutional module


End-to-end trainable with off-the-shelf algorithms for the minimization of the Connectionist Temporal Classification loss (CTC)

## Data

We collected images of 9100 expressions including 99 different symbols and tokens

- the digits 0... 9
- the English letters a...z and A... Z
- the Greek letters $\alpha, \beta, \gamma, \epsilon, \phi, \lambda, \mu$ and $\pi$;
- the arithmetic operators,,$+- \times, \cdot$ and $\div$
- the relational operators $<,>, \leqslant, \geqslant,=$
- the parenthesis (, ), [, ] and |
- the punctuation symbols ., ; and :
- the integral symbol $\int$
- the LATEX tokens \frac, \sqrt, _ and ^

8300 training images, 400 validation, 400 test

## Data

Expressions were randomly generated according to a grammar and handwritten by more than 100 volunteers

| $0 \cdot 1 \cdot 1+y+39^{2}$ | $\frac{5}{2}-\frac{161-3}{k-0}$ | $\frac{\mathrm{P}}{-6} \geq \frac{7}{F}$ | $+l \geqslant V_{x z}-N$ |
| :---: | :---: | :---: | :---: |
| W: $\left\|0^{3}\right\|$ | $\left[\frac{4+6+x}{z-T-6 x c}\right]$ | b. $D+A-1 L<N$ | $2+r \geqslant \sqrt{(T-2 \cdot E)}$ |
| $3 ; 8^{9} \div 5^{28}$ | $3>x+6+\frac{5}{8}$ | $G B \leq \int_{m}^{N} 89$ | $\sqrt{\sqrt{a}:[67-[83355]}$ |
| $y A+b-y+b$ | $\|n-F\| \pm I-y \div c-1$ | $y-z, k$ | $\frac{4^{4}}{\frac{94}{68}+967}$ |
| p.io | $8 v \leqslant \sqrt{(o)}$ | $-4 \div \int_{2}^{2} A+c$ | $\|A\|-A c$ |
| $5 \div I+x \cdot 3$ | $h \div M: a: 40-X-2 B+4$ | $\sqrt[8]{\left.A-\frac{9}{5-(14+N\|x\|+c(B \times 3)}\right)}$ | $\sqrt[L]{\alpha \cdot \frac{2 x[28-98]}{[88]-e x x}}$ |
| $2 z \div T \times d$ | $\sqrt{m \cdot s-2}+45 \div 3$ | $\sqrt{\sqrt{[8 \cdot[i+A]}]}$ | $[9]+5<\sqrt{A}$ |
| $\int_{1}^{x} 4-m$ | $x+B x \geq d$ |  | ( $4+i$ ) $m-z<3 \times k$ |

## Results

We obtained an average Levenshtein distance of 0.691 between expected and output sequences of symbols

| Category | Accuracy (\%) |
| :--- | ---: |
| Digits | 90.7 |
| English letters | 95.2 |
| Greek letters | 95.0 |
| Operators | 96.7 |
| Parentheses | 94.6 |
| Punctuation | 96.4 |
| Fractions | 98.4 |
| Roots | 94.7 |
| Integrals | 100.0 |
| Subscripts | 96.2 |
| Superscripts | 84.2 |

## Results

Errors are most common for bad-quality images and for expressions written in a style that is generally hard to read


## Conclusions

We presented a method for the recognition of handwritten mathematical expressions

Thanks to its recursive definition, the method is fast and accurate

It allows to recognize complex expressions in a resonable time even when computational resources are scarce, which is the case of smartphones and other mobile devices

