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. 1. Background — QSAR model

* Quantitative structure—activity relationship (QSAR) models extract relationships from chemical
structures and predict biological activities, such as toxicity, solubility, and so on.

* QSAR models are used in chemical and biological domain. The main applications include high
throughput screening of chemicals for toxicity prediction and drug delivery.

*  Previous QSAR models utilized molecular descriptors to represent chemical properties as vectors.
The selection of proper molecular descriptors is challenging as the performance of QSAR model is
highly dependent on descriptors.
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. 1. Background - Challenges

* For a deep learning models based on descriptors have two problems:

1. Molecular descriptors require additional conversion processes from inputs, such as
the Simplified Molecular Input Line Entry System (SMILES).

2. The search space for certain substructures of chemicals converted into descriptors
can be limited or ignored
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. 1. Background - Proposal

* We present a Natural Language Processing (NLP) based QSAR model that utilizes SMILES as
direct input.

*  We explored the structural differences of existing transformer-variant models and proposed a
new self-attention based model.

* The representation learning performance of our self-attention module was evaluated in a
multi-task learning environment using several chemical datasets.
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e Component 1: SMILES embedding and feature extraction with CNN layers
 Component 2: Self-attention

 Component 3: Multi-task learning
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. 2. Method — SMILES embedding and feature extraction with CNN layers

A CNN layer serves as a shared hidden layer for multi-task learning.
* Inputis a SMILES format. =» No chemical descriptors required.

* Ashared hidden layer is useful when target of the multi-task learning is closely
related tasks.
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. 2. Method — Self-attention

* A Self-attention module focuses on long-range dependencies of a given input.
* Pseudo-code of the self-attention is shown below.

* No pre-training (see the comparison with other study part)
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. 2. Method — Self-attention

* A Self-attention module focuses on long-range dependencies of a given input.
* Pseudo-code of the self-attention is shown below.

* No pre-training (see the comparison with other study)

The Self-attention module, as well as multi-task

learning, is an essential component.
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Nx Self-attention ] MODEL IN THE TOX21 DATASET.
Fully connected _
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1 SA-MTL 0.9
] } ¥ '
FC1 FC2 soe FCn SA-MTL - Multi-task Learning 0.871
SA-MTL - Self Attention Module 0.798
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. 2. Method — Multi-tasking learning

* Discrete output layers produce outputs for multiple tasks
* Shape : [batch size, sequence size, hidden size] => [batch size]
* A balancing bias is applied to rectify the class-imbalance in the data
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CNN
Fully connected StUdy TABLE VII
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We experimented by replacing the discrete output layer of our model
* * * with a max pooling layer.
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. 3. Comparison with other studies

* 1-b) Smiles Transformer Model: The Smiles Transformer model uses the intermediate result
obtained from the pre-training step.

e 1-c) Transformer-CNN Model: The Transformer-CNN model also implemented the pre-training
approach. The model contains text-CNN block for several CNN layers.

e 1-d) BiLSTM-SA Model: The concept of the BiLSTM-SA model implemented a self-attention
module without the multi-task learning scheme.
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. 3. Comparison with other studies

* 1-b) Smiles Transformer Model: The Smiles Transformer model uses the
intermediate result obtained from the pre-training step.
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. 3. Comparison with other studies

e 1-c) Transformer-CNN Model: The Transformer-CNN model also implemented the
pre-training approach. The model contains text-CNN block for several CNN layers.
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. 3. Comparison with other studies

e 1-d) BiLSTM-SA Model: The concept of the BiLSTM-SA model implemented a self-
attention module without the multi-task learning scheme.
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. 4. Results — Tox21

TABLE III
TOX21 EVALUATION RESULTS COMPARED TO OTHER MODELS

Comparison results on Train and Test Data

Model Notes Average AUC

SA-MTL(OURS) random split 0.9

SCFP cross-validation 0.877

FP2VEC random split 0.876

BiLSTM-SA stratified random split 0.842

GC” random split 0.829

Transformer CNN cross-validation & augmented (.82

Smiles_Transformer  random split 0.802

Comparison results on Score Data

Model Notes Average AUC

SA-MTL(OURS) without ensemble 0.806

SA-MTL(OURS) with ensemble 0.842

DeepTox[27]" with ensemble 0.837

SCFP without ensemble 0.813

" Result from Wu et al.[16] Original model was introduced by Altae-Tran
et al.[28]

" Result from Mayr et al.[27]
Note: The best results on the test set are highlighted in bold.
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. 4. Results — ablation study

TABLE VII
PERFORMANCE CHANGES BY MODIFYING SEVERAL FEATURES OF OUR
MODEL IN THE TOX21 DATASET.

Modified Features Average AUC

SA-MTL 0.9

SA-MTL - Two-Character Embedding 0.888
SA-MTL - Multi-task Learning 0.871
SA-MTL - Self Attention Module 0.798
SA-MTL - CNN 0.824
SA-MTL  CNN<>RNN 0.895
SA-MTL  Discrete Output Layer<>Max Pooling™  0.865
SA-MTL  + Multi-head (5) 0.892
SA-MTL  + Position encoding 0.892

T Self-attention module has a fully connected layer inside. The Hidden Unit
Size 2 1s used at the fully connected layer.

"~ We experimented by replacing the first CNN layer of our model with an
RNN layer.

“" We experimented by replacing the discrete output layer of our model
with a max pooling layer.
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. 5. Conclusions

* We proposed Self-attention Multi-Task learning (SA-MTL) QSAR model which is a descriptor-free as
SMILES is the direct input of the model.

* We described structural differences of our model and other transformer-variant models and
showed the influence of such a structural change on learning.

e Our SA-MTL model exhibited the state-of-the-art performance in the Tox21 and several other
datasets.
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