# Anime Sketch Colorization by Component-based Matching using Deep Appearance Features and Graph Representation 

ICPR 2020, January $10^{\text {th }}-15^{\text {th }}, 2021$

## Thien Do*, Van Pham, Anh Nguyen, Trung Dang, Quoc Nguyen, Bach Hoang, Giao Nguyen <br> Cinnamon AI <br> Minato, Tokyo 105-0001, Japan <br> Email: hades@cinnamon.is <br>  <br> cinnamon Al

## Anime Colorization



## Problem

- The cost for artists is expensive
- The artists have to color the image although it is not change too much, so time-consuming


## Challenges

## Automatic Colorization

- Lack texture information in sketch images
- Complicated objects that require acute coloring
- All pixels in each component must be consistent in output results.


## GAN-based Model

There are many models based on GAN architecture designed for automatic colorization:

- Style2paints [5] requires human users to identify proper colors and art styles at many different locations so that the model can know how to colorize the input sketch
- Autopainter [12] and DeepColor [13], utilize conditional GAN to optimize a set of structured losses in the training of the generator so as to generate more coherent color collocations of a sketch
- PaintsChainerV3 [14] is a commercial products
- Thasarathan et al. [15] and Shi et al. [16] propose a GAN with the constraints of temporal and color conditions to improve the colorization

However, these methods produce low-quality results with apparent color mistakes, color bleeding or color distortion when applied on real-world sketches

## Automatic Colorization Framework


(a) Colored reference image is the image that has the largest number of components in a cut.
(b) Sketch is segmented into components.
(c) Matching fixed components based on features extracted from a ResNet34 backbone
(d) Deformed components are matched by building two graphs ([6]), one from colored image and one sketch.
(e) Colored output becomes the reference colored image to colorize the sketch frame that comes right after or before

## The First Matching



$$
\begin{aligned}
& j^{*}=\arg \min _{j} \frac{\left\|f_{t_{i}}-f_{r_{j}}\right\|_{2}^{2}}{\max \left(\left\|f_{r_{i}}\right\|_{2}^{2},\left\|f_{t_{j}}\right\|_{2}^{2}\right)} \\
& \text { subject to }\left\{\begin{array}{l}
D\left(\text { center }_{i}, \text { center }_{j}\right)<t_{d} \\
t_{a_{\min }} \leq A\left(\text { area }_{i}, \text { area }_{j}\right) \leq t_{a_{\max }} \\
\frac{\left\|f_{t_{i}}-f_{r_{r}}\right\|_{2}^{2}}{\max \left(\left\|f_{r_{i}}\right\|_{2}^{2},\left\|f_{t_{j}}\right\|_{2}^{2}\right)}<t_{f}
\end{array}\right.
\end{aligned}
$$

- ft , fr are the features of component in target, reference extracted from ResNet-34 network
- $D$ is Euclidean distance function
- $A$ is the area difference function
- td, ta, tf are thresholds of difference


## Graph and Affinity Matrix

- Denoting the sketch/target graph as Gt and the reference graph as Gr
- i1, i2 are the index of node in target graph, and $\mathrm{j} 1, \mathrm{j} 2$ are similar in reference graph
- a(i1), d(i1, i2), f(i1) are area of i 1 , distance between i 1 and i 2 and feature of i 1 , respectively

$$
\begin{gather*}
Q_{\text {node }}\left(i_{1}, i_{2}, j_{1}, j_{2}\right)=Q_{\text {shape }}\left(i_{1}, j_{1}\right) \cdot Q_{\text {shape }}\left(i_{2}, j_{2}\right)  \tag{6}\\
Q_{\text {shape }}\left(i_{1}, j_{1}\right)=\exp \left(-\frac{\gamma}{2} \frac{\left\|f_{t_{i_{1}}}-f_{r_{j_{1}}}\right\|_{2}^{2}}{\max \left(\left\|f_{t_{i_{1}}}\right\|_{2}^{2},\left\|f_{r_{j_{1}}}\right\|_{2}^{2}\right)}+\right)  \tag{7}\\
Q_{\text {shape }}\left(i_{2}, j_{2}\right)=\exp \left(-\frac{\gamma}{2} \frac{\left\|f_{t_{i_{2}}}-f_{r_{j_{2}}}\right\|_{2}^{2}}{\max \left(\left\|f_{t_{i_{2}}}\right\|_{2}^{2},\left\|f_{r_{j_{2}}}\right\|_{2}^{2}\right)}+\right) \tag{8}
\end{gather*}
$$



$$
\begin{gather*}
Q_{\text {edge }}\left(i_{1}, i_{2}, j_{1}, j_{2}\right)=Q_{\text {length }} \cdot Q_{\text {area }}  \tag{3}\\
Q_{\text {length }}=\exp \left(-\alpha \frac{\left|d_{t_{i_{1} i_{2}}}-d_{r_{j_{1} j_{2}}}\right|}{\max \left(d_{t_{i_{1} i_{2}}}, d_{r_{j_{1} j_{2}}}\right)}\right)  \tag{4}\\
Q_{\text {area }}=\exp \left(-\beta \frac{\left|a_{t_{i_{1}}} \cdot a_{t_{i_{2}}}-a_{r_{j_{1}}} \cdot a_{r_{j_{2}}}\right|}{\max \left(a_{t_{i_{1}}} \cdot a_{t_{i_{2}}}, a_{r_{j_{1}}} \cdot a_{r_{j_{2}}}\right)}\right) \tag{5}
\end{gather*}
$$



## The Second Matching

Affinity matrix
$Q\left(i_{1}, i_{2}, j_{1}, j_{2}\right)=Q_{\text {edge }}\left(i_{1}, i_{2}, j_{1}, j_{2}\right) . Q_{\text {node }}\left(i_{1}, i_{2}, j_{1}, j_{2}\right)$
$Q=\left[\begin{array}{cccccc}Q_{1111} & Q_{1112} & Q_{1113} & \ldots & Q_{1211} & \ldots \\ Q_{1121} & Q_{1122} & Q_{1123} & \ldots & Q_{1221} & \ldots \\ Q_{1131} & Q_{1132} & Q_{1133} & \ldots & Q_{1231} & \ldots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \\ Q_{2111} & Q_{2112} & Q_{2113} & \ldots & Q_{2211} & \ldots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \end{array}\right] \quad$ (10)

| Applying the quadratic form $\begin{gathered} \sum_{i_{1}, i_{2}, j_{1}, j_{2}} Q\left(i_{1}, i_{2}, j_{1}, j_{2}\right) x_{i_{1} j_{1}} \cdot x_{i_{2} j_{2}}=x^{T} Q x \\ x=\left[\begin{array}{c} x_{i_{1} j_{1}} \\ x_{i_{1} j_{2}} \\ x_{i_{1 j} 3} \\ \vdots \\ x_{i_{2} j_{1}} \\ x_{i_{2} j_{2}} \\ x_{i_{2} j_{3}} \\ \vdots \end{array}\right] \end{gathered}$ | (11) <br> (12) |
| :---: | :---: |
| The optimal solution $\mathrm{x} *$ $x^{*}=\arg \max _{x} x^{T} Q x$ <br> subject to $C x=1, x \in\{0,1\}^{N^{2}}$ | (13) (14) |

## Experimental Dataset

- The number of sketches in each cut: 9 in the training set, 8 in the test set
- The number of components in one sketch in the training and validation subsets are, respectively, 101 and 125 on average
- The range of the resolution is from $(1166 \times 1856)$ to $(2162 \times 4160)$

TABLE II: Data summary

| Dataset | Num of cut | Sketch in cut | Num of component |
| :---: | :---: | :---: | :---: |
| Traning | 152 | $9 \pm 7$ | $101 \pm 58$ |
| Validating | 9 | $8 \pm 3$ | $125 \pm 27$ |

## Experimental Result

- We evaluate our framework and the GAN-based model proposed in [15] on the aforementioned dataset
- Metrics: Accuracy computed on component level and pixel level
- Speed evaluated on 4 CPUs and 16GB of memory, GeForce GTX 1050 Ti GPU

TABLE III: Evaluation of traning dataset

| Model | Acc-component | Acc-pixel | Speed |
| :---: | :---: | :---: | :---: |
| GAN [15] | $13.52 \% \pm 2.48$ | $95.96 \% \pm 5.32$ | $3.78 \mathrm{~s} \pm 1.92$ |
| ResNet-34 | $56.65 \% \pm 26.15$ | $95.11 \% \pm 11.95$ | $3.63 \mathrm{~s} \pm 1.53$ |
| Our | $62.55 \% \pm 26.36$ | $96.12 \% \pm 5.71$ | $9.41 \mathrm{~s} \pm 31.05$ |
| $(0.33,0.33,0.33)$ |  |  |  |
| Our | $63.14 \% \pm 26.52$ | $96.30 \% \pm 5.52$ | $9.43 \mathrm{~s} \pm 31.11$ |

TABLE IV: Evaluation of validating dataset

| Model | Acc-component | Acc-pixel | Speed |
| :---: | :---: | :---: | :---: |
| GAN $[15]$ | $8.44 \% \pm 3.03$ | $89.88 \% \pm 7.09$ | $3.84 \mathrm{~s} \pm 1.85$ |
| ResNet-34 | $57.48 \% \pm 20.31$ | $95.42 \% \pm 4.16$ | $4.80 \mathrm{~s} \pm 1.45$ |
| Our | $63.88 \% \pm 18.94$ | $96.49 \% \pm 3.98$ | $9.25 \mathrm{~s} \pm 20.65$ |
| $(0.33,0.33,0.33)$ |  |  |  |
| Our | $64.63 \% \pm 20.18$ | $96.39 \% \pm 4.01$ | $9.56 \mathrm{~s} \pm 20.41$ |
| $(0.55,0.15,0.30)$ |  |  |  |

## Example output

## Our model



(a) Character 1


(b) Character 2

Style2paints [5]

(b) Character 2

## Conclusion

- We introduce a two-stage component-based graph matching algorithm to colorize a series of sketches based on a reference colored image
- After conducting experiments on real-world datasets, we demonstrate that the algorithm can produce high-quality colorized pictures, with high accuracy, good time efficiency and intuitive user experience
- As a result, our method is a promising solution to many high-precision line art colorization tasks in industrial settings
- We will focus our future works on the interpolation of emotions and/or actions of anime characters in a series of scenes to provide more semantic and temporal context for automatic sketch colorization


## THANK YOU

