

Unsupervised Moving Object Detection through Background Models for PTZ Camera

Kimin Yun, Hyungil Kim, Kangmin Bae, Jongyoul Park

Overview: Moving Object Detection in PTZ camera

- Related research area
 - \approx video object detection / segmentation
 - supervised method / human intervention for first frame
- Ours: Background-Centric approach
 - Visual surveillance and monitoring
 - Strength: Unsupervised method / Real-time operation without GPU

Overview

- Naive approach
 - Background modeling with Gaussians (mean, variance)
 - Apply the affine/projective transform for Moving Camera
 - Problem: Too many false positives

- Conventional approach
 - Reduce the false positives
 - Apply the Spatio-Temporal background modeling
 - Problem: Foreground loss caused by background contamination

Proposed method

- The overall framework of the proposed method
 - Build the fine background models by extending ViBe*
 - spatio-temporal update is applied
 - model initialization and update rule is changed by camera movement
 - Combine the coarse and fine foreground using Watershed segmentation

Algorithm 1: Updating the fine background model

Proposed method

- Fine background model
 - reduce the background contamination

update rule

Experiments

- Compared methods
 - Object-centric methods
 - uNLC (unsupervised version of NLC)
 - OSVOS (video object segmentation without finetuning)
 - CIS
 - BASNet (Salient object detector)
 - Background-centric methods
 - Background modeling + Naive extension (ViBe*, FIC*, BMRI-ViBe*)
 - Conventional methods: MCD NP, MCD 5.8ms, Stochastic approx, FP Sampling, , SC MCD
- Dataset

Moving camera dataset from SC MCD

< Reference >

NLC – A. Faktor and M. Irani, "Video Segmentation by Non-Local Consensus voting,," in BMVC, 2014.

OSVOS – S.Caelles et al., "One-Shot video object segmentation," in CVPR, 2017.

CIS – Y. Yang et al., "Unsupervised moving object detection via contextual information separation," in CVPR, 2019.

BASNet – X. Qin et al., "BASNet: Boundary-Aware Salient Object Detection," in CVPR, 2019.

ViBe – O. Barnich and M. Van Droogenbroeck, "ViBe: A Universal Background Subtraction Algorithm for Video Sequences." IEEE Trans Image Process, 2011.

FIC – J. Choi et al., "Robust moving object detection against fast illumination change," Comput Vis Image Und, 2012.

BMRI-Vibe – F. C. Cheng et al., "A background model re-initialization method based on sudden luminance change detection," Eng Appl Artif Intell, 2015.

MCD NP – Kim et al., "Detection of moving objects with a moving camera using non-panoramic background model," Mach Vis Appl, 2012.

MCD5.8ms – Yi et al., "Detection of Moving Objects with Non-stationary Cameras in 5.8ms: Bringing Motion Detection to Your Mobile Device," in *CVPR Workshop*, 2013. Stochastic approx – F. J. Ló pez-Rubio and E. Ló pez-Rubio, "Foreground detection for moving cameras with stochastic approximation," *Pattern Recognit Lett*, 2015. FP Sampling – K. Yun and J. Y. Choi, "Robust and fast moving object detection in a non-stationary camera via foreground probability based sampling." in *ICIP*, 2015. SC MCD – K. Yun et al., "Scene conditional background update for moving object detection in a moving camera," *Pattern Recognit Lett*, 2017.

ETRI

Experiment results

• F-score measure

Method	walking	skating	woman	woman2	fence	ground1	ground2	ground3	ground4	ground5	average
ViBe* [6]	0.0375	0.2229	0.0375	0.0929	0.1042	0.5656	0.4733	0.4118	0.0299	0.1309	0.2107
FIC* [8]	0.0613	0.2373	0.0361	0.1345	0.0954	0.4543	0.4108	0.1538	0.0453	0.1319	0.1761
BMRI-ViBe* [9]	0.0438	0.2402	0.0400	0.0921	0.1104	0.4249	0.3868	0.2161	0.0383	0.1377	0.1730
MCD NP [25]	0.4351	0.4164	0.4935	0.5791	0.2691	0.2773	0.3750	0.1222	0.1969	0.3540	0.3519
MCD 5.8ms [26]	0.7349	0.2447	0.3395	0.3448	0.7357	0.6573	0.7177	0.1531	0.5274	0.0678	0.4523
Stochastic approx [28]	0.8335	0.6543	0.3986	0.8783	0.8788	0.2221	0.2792	0.0181	0.0111	0.2181	0.4392
FP Sampling [27]	0.7058	0.8539	0.7268	0.5828	0.7654	0.7977	0.8306	0.1396	0.4226	0.8212	0.6646
SC MCD [29]	0.7496	0.8560	0.6650	0.6311	0.7637	0.8965	0.9118	0.8843	0.8824	0.9326	0.8173
uNLC [32]	0.0158	0.1419	0.0178	0.0487	0.0346	0.0570	0.0342	0.0216	0.0031	0.0143	0.0389
OSVOS [1]	0.3397	0.5344	0.0121	0.1260	0.7033	0.7697	0.5447	0.9696	0.0050	0.1224	0.4127
CIS [33]	0.0538	0.3036	0.1522	0.4681	0.1180	0.1545	0.0862	0.0581	0.0046	0.0184	0.1418
BASNet [34]	0.3433	0.9379	0.0205	0.2289	0.2119	0.6039	0.9564	0.9586	0.9439	0.9829	0.6188
Proposed method	0.7809	0.9600	0.7269	0.7065	0.8081	0.9037	0.9032	0.8700	0.9080	0.9793	0.8546

(a) Results of the *skating* sequence.

ETRI

Experiment results

(b) Results of the woman sequence.

Experiment results

• Measure from video object segmentation

Measure	Mean \mathcal{J}	Recall \mathcal{J}	Mean \mathcal{F}	Recall \mathcal{F}
ViBe* [6]	0.2095	0.1364	0.1717	0.0773
FIC* [8]	0.1701	0.0607	0.2256	0.1337
BMRI-ViBe* [9]	0.1640	0.0553	0.1703	0.0817
MCD NP [25]	0.2634	0.0580	0.5569	0.7090
MCD 5.8ms [26]	0.3736	0.3756	0.5427	0.6100
Stochastic approx [28]	0.3398	0.3789	0.4003	0.4245
FP Sampling [27]	0.4294	0.5009	0.6031	0.7156
SC MCD [29]	0.5213	0.5952	0.7021	0.8200
uNLC [32]	0.1073	0.1002	0.1416	0.1181
OSVOS [1]	0.2547	0.2259	0.4129	0.3068
CIS [33]	0.1583	0.0591	0.2356	0.1253
BASNet [34]	0.5540	0.6204	0.6696	0.6880
Proposed method	0.5603	0.6541	0.7214	0.8378

- \mathcal{J} : region-based segmentation similarity
- $\mathcal F$: contour-based accuracy

• Synergy effect of two backgrounds

•	Compu	tations
---	-------	---------

Method	precision	recall	F-measure
coarse BG model	0.9084	0.7655	0.8248
fine BG model	0.5669	0.7833	0.6095
combined model	0.9286	0.8041	0.8546

Module	Time (millisecond)
Motion estimation	2.207
Motion compensation	5.117
Age map update	0.595
Background model update	13.902
Foreground combining	0.671
Total	22.492

CPU only, 320 x 240, 45.5fps

Experiment results

Combined with supervised method (AMNet*)

Robustness test to image noise

Performance change according to image noise intensity: F-measure, Mean J, Mean F

Fig. 7. Example results for the noisy images. Each row shows the experimental results when the noise mean of image is 25 and 50, respectively.

Conclusion

- Moving Object detection in PTZ Camera
 - Find moving object region in an unsupervised manner
 - Combine the characteristics of two background models
 - Fine background: reduce foreground loss
 - Robust to image noise and can combine the supervised method
 - Real-Time operation without GPU
 - Suitable for pre-processing and surveillance application
- Future work
 - Combine the powerful appearance model such as salient object detector
 - Extend the method to video object segmentation or video inpainting