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Images from Imagenet dataset: http://image-net.org

http://image-net.org/


Challenges

Our setting differs from standard few-shot classification which requires a large set 

of labeled examples for the episodic training.

Key challenges: 

• Learn a deep image representation on unlabeled data such that it would 

generalize well to unseen classes in testing

• Estimate an accurate similarity between query and support images



Applications

• In domains with very few labeled images per class:
• Medical images
• Unsupervised video object segmentation
• Online tracking

https://github.com/foolwood/SiamMaskhttps://liuziwei7.github.io/projects/VSReID.htmlhttps://medicalxpress.com

https://github.com/foolwood/SiamMask
https://liuziwei7.github.io/projects/VSReID.html
https://medicalxpress.com/news/2020-05-ct-scan-database-ai-covid-.html


Prior Work

• Generate pseudo labels for training set and apply episodic training as in standard few-shot 

classification:

• Image clustering (Hsu et al., ICLR 2019)

• Data augmentation where each training example is a unique class 

(Khodadadeh et al., NeurIPS 2019)

è Limitations of pseudo labels:

• Are noisy and not reliable for learning a distance based representation

• Do not respect the semantic similarity relationship between images



Proposed Unsupervised Training
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Image Masking and Triplet Loss
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Few-shot Classification Testing
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Experiments

• Datasets: 

• Mini-Imagenet: 100 classes: train: 64, validation: 16, and test: 20 classes

• Tiered-Imagenet: 608 classes grouped into 34 high-level categories: train: 20, 

validation: 6, and test: 8 categories (minimize semantic similarity between the splits)

• Evaluation metrics:

• Average 𝑁-way 𝐾-shot classification accuracy with 95% confidence interval over 

1000 episodes where 𝑁 is the number of classes and 𝐾 is the number of labeled 

examples for each class



Few-shot Classification Results

TABLE II
UNSUPERVISED FEW-SHOT CLASSIFICATION ON MINI-IMAGENET AND TIERED-IMAGENET. AT THE BOTTOM, WE SHOW RESULTS OF RECENT

FULLY-SUPERVISED APPROACHES TO FEW-SHOT CLASSIFICATION AS OUR UPPER BOUND.

Mini-Imagenet, 5-way Tiered-Imagenet, 5-way

Unsupervised Methods 1-shot 5-shot 1-shot 5-shot
SN-GAN [9] 34.84 ± 0.68 44.73 ± 0.67 35.57 ± 0.69 49.16 ± 0.70
AutoEncoder [26] 28.69 ± 0.38 34.73 ± 0.63 29.57 ± 0.52 38.23 ± 0.72
Rotation [38] 35.54 ± 0.47 45.93 ± 0.62 36.90 ± 0.54 51.23 ± 0.72
BiGAN kNN [8] 25.56 ± 1.08 31.10 ± 0.63 - -
AAL-ProtoNets [5] 37.67 ± 0.39 40.29 ± 0.68 - -
UMTRA + AutoAugment [6] 39.93 50.73 - -
CACTUs-ProtoNets [4] 39.18 ± 0.71 53.36 ± 0.70 - -
Our GdBT2 48.28 ± 0.77 66.06 ± 0.70 47.86 ± 0.79 67.70 ± 0.75

Fully-supervised Methods

ProtoNets [1] 46.56 ± 0.76 62.29 ± 0.71 46.52 ± 0.72 66.15 ± 0.74

TABLE III
UNSUPERVISED FEW-SHOT CLASSIFICATION ON MINI-IMAGENET AND TIERED-IMAGENET. AT THE BOTTOM, WE SHOW RESULTS OF RECENT

FULLY-SUPERVISED APPROACHES TO FEW-SHOT CLASSIFICATION AS OUR UPPER BOUND.

Mini-Imagenet, 5-way Tiered-Imagenet, 5-way

Unsupervised Methods 1-shot 5-shot 1-shot 5-shot
SN-GAN (Miyato et al., ICLR 2018) 34.84 ± 0.68 44.73 ± 0.67 35.57 ± 0.69 49.16 ± 0.70
AutoEncoder (Vincent et al., JMLR 2010) 28.69 ± 0.38 34.73 ± 0.63 29.57 ± 0.52 38.23 ± 0.72
Rotation (Gidaris et al., ICLR 2018) 35.54 ± 0.47 45.93 ± 0.62 36.90 ± 0.54 51.23 ± 0.72
BiGAN kNN (Donahue et al,. ICLR 2017) 25.56 ± 1.08 31.10 ± 0.63 - -
AAL-ProtoNets (Antonious et al., Arxiv 2019) 37.67 ± 0.39 40.29 ± 0.68 - -
CACTUs-ProtoNets (Hsu et al., ICLR 2019) 39.18 ± 0.71 53.36 ± 0.70 - -
Our GdBT2 48.28 ± 0.77 66.06 ± 0.70 47.86 ± 0.79 67.70 ± 0.75

Fully-supervised Methods

ProtoNets (Snell et al., NeurIPS 2017) 46.56 ± 0.76 62.29 ± 0.71 46.52 ± 0.72 66.15 ± 0.74

Fig. 4. Our image masking with rectangular patches for Mini-Imagenet. In every row, the images are organized from left to right in the descending order by
their estimated distance to the original (unmasked) image.
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Conclusions

• We have addressed unsupervised few-shot classification
• Our approach extends the vanilla GAN to integrate adversarial learning with two 

new strategies for self-supervised learning:
• Latent code reconstruction loss
• Image masking with triplet loss

• Outperform SOTAs with significant margin (9% on Mini-Imagenet)
• Beat a fully-supervised few-shot classification approach (ProtoNet)!


