

Robust Lexicon-Free Confidence Prediction for Text Recognition

Qi Song, Qianyi Jiang, Rui Zhang and Xiaolin Wei

Meituan, Beijing, China

Paper ID: 971

Introduction

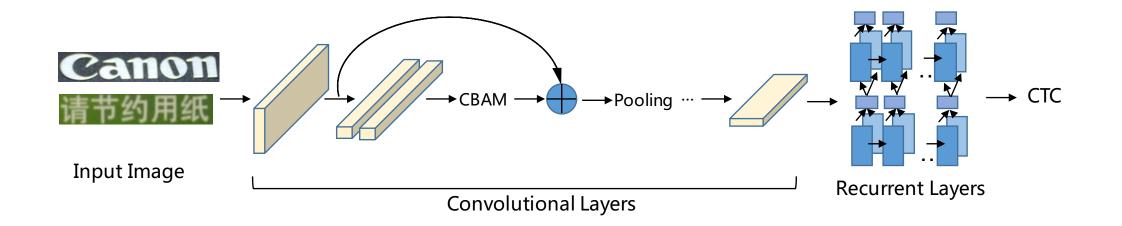
Optical Character Recognition (OCR) is booming in recent years. As we all know, the text recognition results are vulnerable to slight perturbation in input images, thus a method for measuring how reliable the results are is crucial.

In this paper, We propose a coarse-to-fine method for lexicon-free OCR confidence prediction which can be embedded with any text sequence recognition networks.

Method

A. Text Recognizer

the recognizer is an encoder-decoder structure network. The encoder consists of two components, a CNN based visual feature extraction module and an RNN based semantic modeling module. In the decoding stage, a CTC layer is utilized for transcription.



Method

In the lexicon-free scenario, let x be the input image and c = [c1,c2,...,cD] of length D be the predicted string. The confidence score C(c) can be presented as a conditional probability, C(c) = p(c|x).

• Coarse Scoring: $C_c(\mathbf{c}) = \frac{K}{N}$.



The architecture of the SIMO for inference.

Method

 Refined Scoring: After acquiring K valid candidates, the conditional probabilities of Top-1 probable character sequence p(s|x) can be calculated from valid candidates. the final refined score is evaluated as follows :

$$\overline{\mathbf{p}}(s|x) = \frac{1}{K} \sum_{i=1}^{K} \mathbf{p}(s_i|x),$$

$$C_r(\mathbf{c}) = \begin{cases} \min_{\overline{p}(s_i|x) \in \overline{\mathbf{p}}(s|x)} \overline{p}(s_i|x), & \text{if } C_c(\mathbf{c}) \ge \epsilon \\ 0 & otherwise \end{cases}$$

Evaluation Results

 TABLE II

 AUC OBTAINED BY DIFFERENT METHODS. THE FIRST TWO ROWS ARE TEXT RECOGNITION ACCURACIES OF THE SIMO WITH DIFFERENT DECODING APPROACHES.

Accuracy/AUC	IC13	SVT	ALIF	MSRA-TD500
Beam searching	75.38±0.59%	56.23±0.64%	85.5±1.0 %	59.76±0.49%
Greedy searching	75.00±0.55%	55.61±0.49%	85.4±1.0 %	59.75±0.86%
CTC-ratio	0.979	0.889	0.971	0.938
Ours, f_{greedy}	0.971	0.877	0.969	0.931
Ours, f_{greedy} (model ensemble)	- '	-	- '	0.910
Ours, f_{beam}	0.979	0.893	0.973	0.939

Evaluation Results

TABLE IIIThe average, top50, top90, top99 and top999 time performance

ON DIFFERENT DATASETS. THE TOP* INDICATES THE RUNNING TIME AT THE * PERCENT IN A ASCENDING SORTING.

Dataset	Time (s)	Method		
		CTC-ratio	f_{beam}	f_{greedy}
IC13	average	0.041	0.156	0.046
	top50	0.033	0.132	0.033
	top90	0.053	0.129	0.049
	top99	0.080	0.361	0.076
	top999	0.293	0.775	0.229
SVT	average	0.039	0.143	0.049
	top50	0.031	0.121	0.032
	top90	0.049	0.208	0.047
	top99	0.066	0.296	0.066
	top999	0.078	0.341	0.079
ALIF	average	0.040	0.079	0.073
	top50	0.019	0.060	0.053
	top90	0.113	0.156	0.143
	top99	0.218	0.272	0.263
	top999	1.650	1.725	2.058
MSRA-TD500	average	7.163	57.051	0.085
	top50	5.927	47.431	0.046
	top90	13.113	104.086	0.083
	top99	25.859	211.020	0.425
	top999	33.337	299.460	0.555

Evaluation Results

MSRA-TD500

IC13

-----0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 Recall 0.5 Recall 0.5 0.4 0.4 0.3 0.3 $f_{greedy}(auc = 0.931)$ 0.2 0.2 $f_{greedy}(auc = 0.971)$ CTC-ratio(auc=0.938) •••• f_{beam}(auc = 0.939) – CTC – ratio(auc = 0.979) 0.1 0.1 Model ensemble(auc=0.910) •••• f_{beam}(auc = 0.979) 0.0 0.0 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 Dracicion Dracicion ALIF SVT 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 Recall 0.5 Recall 0.5 0.4 0.4 0.3 0.3 Ľ. 0.2 0.2 $f_{greedy}(auc = 0.877)$ CTC-ratio(auc=0.971) f_{beam}(auc = 0.973) CTC – ratio(auc = 0.889) 0.1 0.1 •••• $f_{greedy}(auc = 0.969)$ ···· f_{beam}(auc = 0.893) 0.0 0.0 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 Precision Precision

Conclusion

- We present a coarse-to-fine framework that consists of two stages: For the first stage, a solution named SIMO is proposed to calculate a coarse score. For the second stage, a transform function is invented to refine the coarse score.
- Comprehensive experiments show the proposed framework is high competitive in both effectiveness and efficiency.
- Our framework can be applied in both Latin and non-Latin languages with different decoding approaches.