

Single Image Super-Resolution with Dynamic Residual Connection

Karam Park, Jae Woong Soh, Nam Ik Cho

Seoul National University

Introduction

Previous Single Image Super-resolution methods:

- Require huge number of parameters.
- Use manually designed structure with fixed residual connection.
- These structures can only use a limited combination of features, following the static residual path.

Our method:

- Lightweight SISR network based on dynamic residual attention.
- Network learns how to design its residual paths during training process.
- The proposed method allows the network to dynamically select residual paths depending on input image, based on the idea of attention mechanism.

Proposed Method

- Proposed Dynamic Residual Attention Network (DRAN) consists of five main parts:
 - Two convolutional layers at the input and output side
 - Dynamic residual module (DRM)
 - Set of dynamic residual blocks (DRBs)
 - Upsampler network

Proposed Method: Dynamic Residual Module

- Dynamic Residual Module (DRM) learns the correlation between an input image and residual path during training process.
- DRM provides the optimal residual path set for the given input image.

Proposed Method: Dynamic Residual Block

• All features from preceding blocks are potentially connected with residual connection, and their intensity is determined by DRM.

Quantitative and Qualitative Results

Scale	Method	Params	MAC	Set5 PSNR/SSIM	Set14 PSNR/SSIM	B100 PSNR/SSIM	Urban100 PSNR/SSIM
x2	Bicubic FSRCNN DRCN DRRN MemNet SelNet CARN FALSR-A FALSR-A FALSR-B FALSR-C OISR-RK2-s OISR-RK2-s DRAN-s DRAN	0.01M 1.77M 0.30M 0.68M 0.97M 1.59M 1.02M 0.33M 0.41M 1.37M 1.37M 0.79M 1.48M	- 6.0G 17974G 6796.9G 623.9G 225.7G 222.8G 234.7G 74.7G 93.7G 316.2G 316.2G 180.6G 318.9G	33.66 / 0.9299 37.00 / 0.9558 37.63 / 0.9588 37.74 / 0.9591 37.78 / 0.9597 37.89 / 0.9598 37.76 / 0.9590 37.82 / 0.9595 37.61 / 0.9585 37.66 / 0.9586 37.98 / 0.9604 38.02 / 0.9601 38.05 / 0.9607	30.24 / 0.8688 32.63 / 0.9088 33.04 / 0.9118 33.23 / 0.9136 33.28 / 0.9143 33.61 / 0.9160 33.52 / 0.9166 33.55 / 0.9168 33.29 / 0.9143 33.26 / 0.9143 33.26 / 0.9143 33.26 / 0.9172 33.62 / 0.9178 33.49 / 0.9171 33.65 / 0.9179	29.56 / 0.8431 31.53 / 0.8920 31.85 / 0.8920 32.05 / 0.8973 32.08 / 0.8978 32.08 / 0.8978 32.09 / 0.8978 32.09 / 0.8978 32.12 / 0.8987 31.97 / 0.8967 31.96 / 0.8966 32.18 / 0.8996 32.20 / 0.9000 32.14 / 0.8999 32.20 / 0.9002	26.88 / 0.8403 29.88 / 0.9020 30.75 / 0.9133 31.23 / 0.9188 31.31 / 0.9195 31.92 / 0.9256 31.93 / 0.9256 31.28 / 0.9191 31.24 / 0.9181 32.09 / 0.9281 32.21 / 0.9290 31.98 / 0.9272 32.25 / 0.9296
x3	Bicubic FSRCNN DRCN DRRN MemNet SelNet CARN OISR-RK2-s OISR-LF-s DRAN-s DRAN	0.01M 1.77M 0.30M 0.68M 1.16M 1.59M 1.55M 1.55M 0.97M 1.66M	5.0G 17974G 6796.9G 623.9G 120.0G 118.8G 160.1G 160.1G 100.0G 161.5G	$\begin{array}{c} 30.39 \ / \ 0.8682 \\ 33.16 \ / \ 0.9140 \\ 33.82 \ / \ 0.9226 \\ 34.03 \ / \ 0.9244 \\ 34.09 \ / \ 0.9248 \\ 34.27 \ / \ 0.9257 \\ 34.29 \ / \ 0.9255 \\ 34.43 \ / \ 0.9273 \\ 34.39 \ / \ 0.9272 \\ 34.30 \ / \ 0.9261 \\ 34.50 \ / \ 0.9276 \end{array}$	27.55 / 0.7742 29.43 / 0.8242 29.76 / 0.8311 29.96 / 0.8349 30.00 / 0.8385 30.30 / 0.8399 30.29 / 0.8407 30.33 / 0.8420 30.35 / 0.8426 30.27 / 0.8413 30.40 / 0.8437	27.21 / 0.7385 28.53 / 0.7910 28.80 / 0.7963 28.95 / 0.8001 28.96 / 0.8001 28.97 / 0.8025 29.06 / 0.8034 29.10 / 0.8053 29.11 / 0.8058 29.05 / 0.8049 29.13 / 0.8068	24.46 / 0.7349 26.43 / 0.8080 27.15 / 0.8276 27.53 / 0.8378 27.56 / 0.8376 28.06 / 0.8493 28.20 / 0.8534 28.24 / 0.8544 28.07 / 0.8509 28.35 / 0.8567
x4	Bicubic FSRCNN DRCN DRRN MemNet SelNet CARN OISR-RK2-s OISR-LF-s DRAN-s DRAN	0.01M 1.77M 0.30M 0.68M 1.42M 1.59M 1.52M 1.52M 0.94M 1.62M	- 4.6G 17974G 6796.9G 623.9G 83.1G 90.9G 114.2G 114.2G 80.3G 114.9G	28.42 / 0.8104 30.48 / 0.8628 31.53 / 0.8854 31.68 / 0.8888 31.74 / 0.8893 32.00 / 0.8931 32.13 / 0.8937 32.21 / 0.8950 32.14 / 0.8947 32.09 / 0.8925 32.27 / 0.8947	26.00 / 0.7027 27.49 / 0.7503 28.02 / 0.7670 28.21 / 0.7720 28.26 / 0.7723 28.49 / 0.7783 28.60 / 0.7806 28.63 / 0.7819 28.63 / 0.7819 28.54 / 0.7810 28.63 / 0.7833	25.96 / 0.6675 26.90 / 0.7101 27.23 / 0.7233 27.38 / 0.7284 27.40 / 0.7281 27.44 / 0.7325 27.58 / 0.7349 27.58 / 0.7364 27.60 / 0.7369 27.53 / 0.7356 27.61 / 0.7380	23.14 / 0.6577 24.52 / 0.7221 25.14 / 0.7510 25.44 / 0.7638 25.50 / 0.7630 26.07 / 0.7837 26.14 / 0.7874 26.17 / 0.7888 25.98 / 0.7835 26.23 / 0.7909

