Knowledge Distillation for Action Anticipation via Label Smoothing

<u>Guglielmo Camporese</u>, Pasquale Coscia, Antonino Furnari, Giovanni Maria Farinella, Lamberto Ballan

guglielmo.camporese@phd.unipd.it

Action Anticipation - Definition

Action Anticipation is the task of classifying upcoming actions given past and current video observations.

Action Anticipation - Example

Observed

Future

Label

put glass

open bin

Observed

Future

Label

roll dough

turn-on microwave

Future is Multimodal

The action anticipation problem can be seen as a multilabel task with missing labels, since the dataset "samples" only one of the possible future **[1]**.

[1] Furnari et al., Leveraging Uncertainty to Rethink Loss Functions and Evaluation Measures for Egocentric Action Anticipation, ECCV 2018.

Hard Labels vs Soft Labels

Previous works uses Cross Entropy Loss with one-hot encoded labels, leveraging only one of the possible future scenarios as ground truth.

 \rightarrow We smooth the target distribution enabling the chance of negative (yet still plausible) classes to be selected.

Knowledge Distillation

$$\underbrace{y^{soft}}_{i} = (1 - \alpha)y^{oh} + \alpha\pi$$

$$CE[y^{soft}, p] = -\sum_{i} y^{soft}(i) \log p(i) = (1 - \alpha)CE[y^{oh}, p] + \alpha CE[\pi, p]$$

$$\underbrace{\downarrow}_{i}$$
loss between prediction and one-hot

knowledge distillation term loss between <u>prediction</u> and <u>prior</u>

How to choose a good prior distribution?

Prior Distribution - VerbNoun

Each action is composed by a <u>verb</u> and a <u>noun</u> \rightarrow action = [verb, noun]

We define the <u>VerbNoun</u> prior distribution for an action as follows:

Prior Distribution - Temporal

Some pairs of actions are more likely to occur than other ones.

 \rightarrow We consider all the subsequent action transitions in the training dataset and estimate the transition probability in order to compute the <u>Temporal</u> prior distribution as follows:

$$\pi_{TE}^{(k)}(i) = \frac{Occ\left[a^{(i)} \to a^{(k)}\right]}{\sum_{j} Occ\left[a^{(j)} \to a^{(k)}\right]}$$

where $Occ[a^{(i)} \rightarrow a^{(k)}]$ is the number of times that the i-th action is followed by the k-th action.

Prior Distribution - GloVe

We compute the k-th action embedding using GloVe [2] as follows:

$$\phi^{(k)} = Concat \left[GloVe(v^{(k)}), GloVe(n^{(k)}) \right]$$

and the <u>GloVe</u> prior distribution as follows:

$$\pi_{GL}^{(k)}(i) = \frac{|\phi^{(k)T}\phi^{(i)}|}{\sum_{j} |\phi^{(k)T}\phi^{(j)}|}$$

[2] Pennington et al., GloVe: Global Vectors for Word Representation, EMNLP 2014.

Results - EPIC-Kitchens-55

Top-5 Action Accuracy % @ different anticipation times $[s]$								
	2	1.75	1.5	1.25	1	0.75	0.5	0.25
LSTM One-hot Encoding	27.71 ± 0.33	28.69 ± 0.34	29.84 ± 0.24	30.90 ± 0.48	31.93 ± 0.45	$33.14\pm$ 0.36	34.10 ± 0.44	35.16 ± 0.35
LSTM TE Smoothing	27.94 ± 0.24	28.90 ± 0.27	$30.06 \pm \scriptscriptstyle 0.24$	31.13 ± 0.19	$32.19 \pm \scriptscriptstyle 0.28$	33.21 ± 0.36	34.17 ± 0.37	35.10 ± 0.25
LSTM Uniform Smoothing	28.16 ± 0.27	29.06 ± 0.26	30.23 ± 0.24	31.25 ± 0.27	32.41 ± 0.28	33.64 ± 0.27	34.69 ± 0.19	35.75 ± 0.13
LSTM VN Smoothing	28.43 ± 0.30	$29.41 \pm \scriptscriptstyle 0.31$	$30.68 \pm \scriptscriptstyle 0.28$	31.85 ± 0.21	33.08 ± 0.18	$34.35\pm$ 0.19	35.38 ± 0.34	36.46 ± 0.26
LSTM GL Smoothing	28.61 ± 0.26	29.87 ± 0.25	$30.97 \pm \scriptscriptstyle 0.34$	31.94 ± 0.34	33.12 ± 0.36	34.40 ± 0.37	35.51 ± 0.37	36.87 ± 0.25
LSTM GL+VN Smoothing	28.88 ± 0.20	29.94 ± 0.19	31.23 ± 0.32	32.54 ± 0.31	$\textbf{33.56} \pm 0.28$	34.92 ± 0.25	36.06 ± 0.33	$\textbf{37.29} \pm 0.30$
Improv.	+1.17	+1.25	+1.39	+1.64	+1.63	+1.78	+1.96	+2.13
RU-LSTM	29.44	30.73	32.24	33.41	35.32	36.34	37.37	38.39
RU-LSTM GL+VN Smoothing	30.37	31.64	33.17	34.86	35.90	37.07	38.96	39.74
Improv.	+0.93	+0.91	+0.93	+1.45	+0.58	+0.73	+1.59	+1.35

Results - EGTEA GAZE+

Top-5 Action Accuracy % @ different anticipation times $[s]$								
	2	1.75	1.5	1.25	1	0.75	0.5	0.25
LSTM One-hot Encoding	55.94	58.75	60.94	63.02	65.78	68.04	71.55	73.94
LSTM TE Smoothing	56.13	58.93	61.17	63.24	66.00	68.20	71.75	74.20
LSTM Uniform Smoothing	56.35	59.20	61.37	63.36	66.12	68.41	71.95	74.35
LSTM VN Smoothing	56.85	59.67	61.64	64.03	66.81	68.94	72.56	75.44
LSTM GL Smoothing	57.34	60.11	62.25	64.42	67.21	69.56	73.02	75.83
Improv.	+1.4	+1.36	+1.31	+1.4	+1.43	+1.52	+1.47	+1.89
RU-LSTM	56.82	59.13	61.42	63.53	66.40	68.41	71.84	74.28
RU-LSTM GL Smoothing	59.99	62.02	63.95	66.47	68.74	72.16	75.21	78.11
Improv.	+3.17	+2.89	+2.53	+2.94	+2.34	+3.75	+3.37	+3.83

Results - Best Prior Distribution

Top-5 Action Accuracy % @ 1 [s]									
	One-hot	TE Smoothing	Uniform Smoothing	VN Smoothing	GL Smoothing				
LSTM (RGB-only)	29.54	29.60	29.76	29.83	29.85				
LSTM (Flow-only)	20.43	20.53	20.65	20.69	20.77				
LSTM (OBJ-only)	29.5	29.64	29.69	29.79	29.82				
RU-LSTM (RGB-only)	30.83	30.95	31.00	31.05	31.19				
RU-LSTM (Flow-only)	21.42	21.51	21.51	21.63	21.73				
RU-LSTM (OBJ-only)	29.89	29.99	30.07	30.04	30.19				

Conclusions

- We generalize the label smoothing idea extrapolating semantic priors from the action labels to capture the multi-modal future component of the action anticipation problem,
- We show that label smoothing, in this context, can be seen as a knowledge distillation process,
- We show that with our simple method we can systematically improve results of state-of-the-art models on action anticipation.

Thank You

guglielmo.camporese@phd.unipd.it