

Unconstrained Facial Expression Recogniton Based on Cascade Decision and Gabor Filters

Yanhong Wu, Lijie Zhang, Guannan Chen, Pablo Navarrete Michelini BOE Technology Group Inc., Ltd {wuyanhong, zhanglijie, chenguannan, pnavarre}@.boe.com.cn

PROPOSED METHOD

EXPERIMENT RESULTS

□ 7 facial expression recognition (FER)

Angry

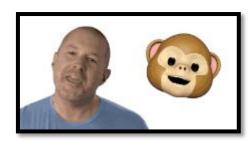
Disgust

Fear

Happy

Sad

Surprise Neutral


Application

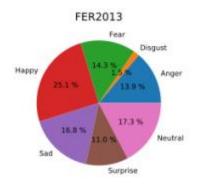
Health care

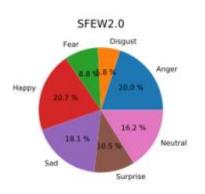
Class feedback

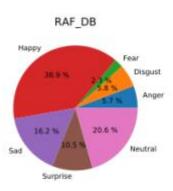
3D entertainment

- Posed Facial Expression and Unconstrained Facial Expression
 - ➤ Variation of head pose, illumination, identity bias
 - ➤ More applications of unconstrained expression

CK+, JAFFE






FER2013, SFEW2.0

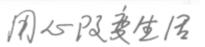
- Posed Facial Expression and Unconstrained Facial Expression
 - ➤ Lack of sufficient training data
 - Unbalanced data distribution


- Posed Facial Expression and Unconstrained Facial Expression
 - > Prior arts treat expressions equally in classification
 - $\geq acc(Ha) > acc(Su) > acc(Ne)$.

TABLE I

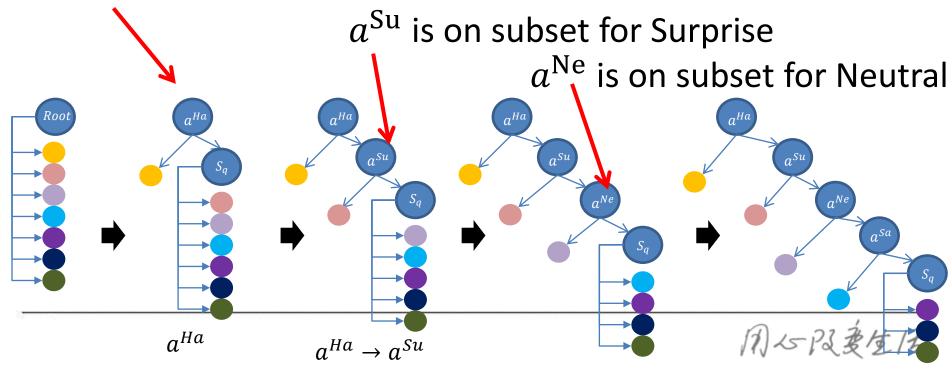
EXPRESSION RECOGNITION PERFORMANCE OF STATE-OF-THE-ART METHODS FOR FER2013, RAF-DB AND SFEW2.0 RESPECTIVELY.

Dataset	method	An	Di	Fe	Ha	Sa	Su	Ne
FER2013	[7]	69.0	79.4	63.3	90.9	65.4	85.3	74.9
RAF-DB	[10]	71.6	52.2	62.2	92.8	80.1	81.2	80.3
SFEW2.0	[4]	61	4.4	6.4	87.7	38.6	75.6	57.5
Average		67.2	45.3	43.9	90.5	61.4	80.7	70.9

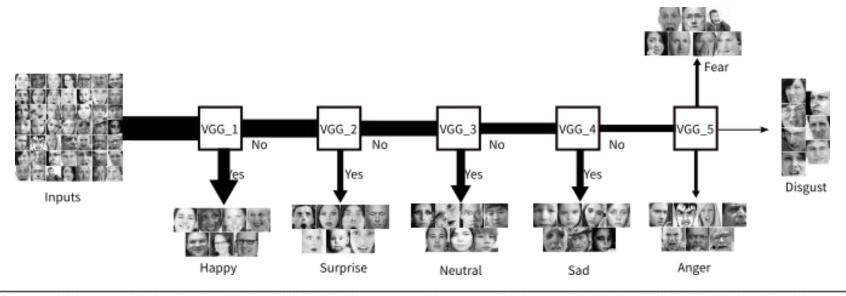

用与改变生活

■ An Assumption

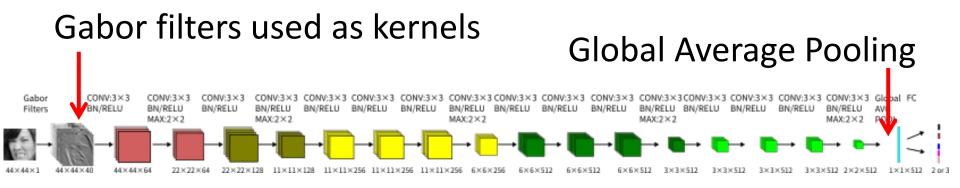
➤ an expression with a higher accuracy is easier to be recognized when treated equally, and those expressions easier to recognize will hinder the recognition of uneasy expressions.

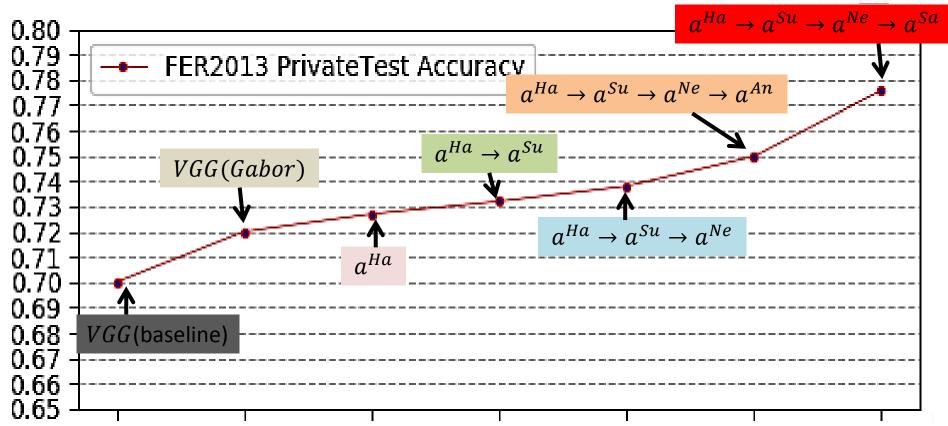

We think that features of easy expression are dominant in the same classifier

■ Making Decision Cascadedly

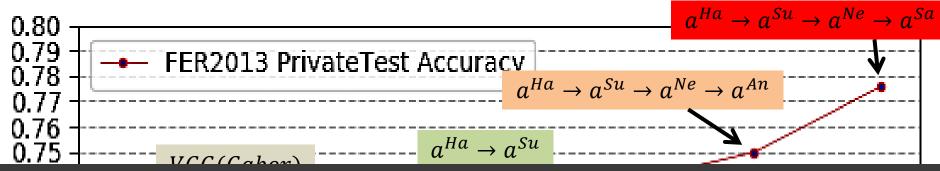

 a^{Ha} is binary classifier on the whole dataset for Happy

Diagram


 \triangleright VGG19 network is used as classifier a^{Ha} and et. al.


用与改变生活

- VGG net
 - ➤ VGG 19 layers



用与限爱生居

TABLE I

EXPRESSION RECOGNITION PERFORMANCE OF STATE-OF-THE-ART METHODS FOR FER2013, RAF-DB AND SFEW2.0 RESPECTIVELY.

acc	(Ha) > a	acc(S	u) > :	acc(N	(e) >	acc(A	ln)	
Dataset	memod	An	Dí	Fe	Ha	Sa	5u	Ne
FER2013	> acc((Sa) >	<pre>> acc(</pre>	Di) >	· acc(Fe)	85.3	74.9
RAF-DB	[10]	71.6	52.2	62.2	92.8	80.1	81.2	80.3
SFEW2.0	[4]	61	4.4	6.4	87.7	38.6	75.6	57.5
Avera	age	67.2	45.3	43.9	90.5	61.4	80.7	70.9

EXPERIMENT RESULTS

- Unconstrained facial expression datasets
 - FER2013, RAF-DB, SFEW2.0

图与段爱生居

		An	Di	Fe	Ha	Sa	Su	Ne	Average	Accuracy
	Kim et al. [8] in CVPR Workshop 2016	-	-	-	-	-	-	-	-	73.7
FER2013	Kim et al. [6]	-	-	-	-	-	-	-	-	72.7
	Pramerdorfer et al. [9] in CVPR 2016	-	-	-	-	-	-	-	-	75.2
	Georgescu et al. [13] in IEEE Access 2019	-	-	-	-	-	-	-	-	75.42
	Zhang et al. [7] in ICCV 2015	69.0	79.4	63.3	90.9	65.4	05.0	710	75.6	75.1
	mini-Xception (baseline)	60	55	41	87	53	No G	labor	64.1	66
	VGG-19 (baseline)	60	67	54	89	57	00	/1	68.3	70
	one-vs-the-others (baseline)	64	0	15	87	44	76	54	48.6	60.7
	VGG-19 w.t. Gabor	62	56	47	89	62	83	73	67.4	72
	a^{Ha}	62	65	51	88	71	8 G	abor	70.1	72.7
	$a^{Ha} \rightarrow a^{Su}$	65	72	58	88	81	75	80	73.9	73.2
	$a^{Ha} \rightarrow a^{Su} \rightarrow a^{Ne}$	67	37	60	93	78	73	69	68.1	73.8
	$a^{Ha} \rightarrow a^{Su} \rightarrow a^{Ne} \rightarrow a^{An}$	83	65	85	85	56	83	61	74	74.98
	$a^{Ha} \rightarrow a^{Su} \rightarrow a^{Ne} \rightarrow a^{Sa}$	84	70	75	85	76	73	69	76	77.6
RAF-DB	Li et al. [10] in CVPR 2017	71.6	52.2	62.2	92.8	80.1	81.2	80.3	74.3	-
	Kuo et al. [11] in CVPR Workshop 2018	74.5	67.6	46.9	82.3	58	84.6	59.1	67.6	-
	mini-Xception (baseline)	75	37	50	89	76	83	72	68.9	78.3
	VGG-19 (baseline)	84	0	0	89	86	87	78	60.6	78
	VGG-19 w.t. Gabor	81	57	0	96	86	86	89	70.7	86
	$a^{Ha} \rightarrow a^{Su} \rightarrow a^{Ne} \rightarrow a^{Sa}$	77	86	54	90	93	81	84	80.7	86.5
SFEW2.0	Yu et al. [4] in ICMI 2015	61	4.4	6.4	87.7	38.6	75.6	57.5	47.3	56
	Kim et al. [6]	63.8	0	17.1	85.3	49.1	64.9	58.6	48.4	53.9
	Liu et al. [21] in CVPR 2017	66.2	4.4	6.4	87.7	40.4	73.3	57.5	48	54.2
	Ding et al. [22] in FG 2017	42.9	100	10	71.7	29.5	43.9	28.5	46.6	55.2
	Results on FER2013	84	5	30	88	94	2	9	44.6	56.2
	Results on RAF-DB	90	43	7	79	89	5	78	55.9	64.8

FER Result Examples

Fear

Нарру

Sad

Surprise

Neutral

Thanks!

Q&A

Yanhong Wu BOE Technology Group Inc., Ltd