Comparison of deep learning and handcrafted features for mining simulation data

Theodoros Georgiou.
Comparison of deep learning and hand crafted features for mining simulation data

Introduction

Computational Fluid Dynamics (CFD) Simulations:

- Heavily used in engineering design
- Complex and large outputs (flow fields)
- Hard to interpret manually

Approach:

- Construct large scale CFD dataset
- Train CNN on 2D flow fields
- Compare deep learning with hand crafted feature approaches
Comparison of deep learning and hand crafted features for mining simulation data

CFD Simulations/Dataset
Comparison of deep learning and hand crafted features for mining simulation data

CFD Simulations/Dataset

- Velocity Vector Field (\vec{U})
- Pressure Field (p)
- Turbulent Viscosity (ν_t)
- ~ 16K Simulations of air flow around randomly deformed airfoils
- Predict drag and lift forces applied on the shape
Comparison of deep learning and hand crafted features for mining simulation data

Hand Crafted Features (RMSE)

- Tested a number of detectors and descriptors
- Tested two approaches of combining different modalities (Single & Multiple dictionaries) - (SD & MD)
- Tested dense sampling with best performing descriptors
- Regression is done with a Random Forest (RF)
Comparison of deep learning and hand crafted features for mining simulation data

Hand Crafted Features (RMSE)

- Tested a number of detectors and descriptors
- Tested two approaches of combining different modalities (Single & Multiple dictionaries) - (SD & MD)
- Tested dense sampling with best performing descriptors
- Regression is done with a Random Forest (RF)

- Dense sampling outperforms all detectors tested
- ORB & SIFT best performing descriptors
- SIFT slightly outperforms ORB descriptor
Comparison of deep learning and hand crafted features for mining simulation data

Deep learning approaches

- one network for all velocity component (VC)
- one network for each velocity component (DS)
- vector field kernels and activations (RotEqNet)
- Train Random forests with VC activations (VC-RF)
Comparison of deep learning and hand crafted features for mining simulation data

Comparison

<table>
<thead>
<tr>
<th>Approach</th>
<th>Drag (*1e-3)</th>
<th>Lift (*1e-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE-SIFT-MD</td>
<td>6.28</td>
<td>2.33</td>
</tr>
<tr>
<td>VC</td>
<td>5.32</td>
<td>2.18</td>
</tr>
<tr>
<td>VC-RF</td>
<td>2.83</td>
<td>0.92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approach</th>
<th>Drag</th>
<th>Lift</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE-SIFT-MD</td>
<td>0.965</td>
<td>0.987</td>
</tr>
<tr>
<td>VC</td>
<td>0.917</td>
<td>0.949</td>
</tr>
<tr>
<td>VC-RF</td>
<td>0.981</td>
<td>0.994</td>
</tr>
</tbody>
</table>
Comparison of deep learning and hand crafted features for mining simulation data

Per test example lift absolute error

![Graph showing comparison of deep learning and handcrafted features](chart.png)
Comparison of deep learning and hand crafted features for mining simulation data

Varying training set size

<table>
<thead>
<tr>
<th>train set size</th>
<th>1K</th>
<th>2K</th>
<th>4K</th>
<th>8K</th>
<th>14K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drag regression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC</td>
<td>11.7</td>
<td>8.39</td>
<td>6.81</td>
<td>6.05</td>
<td>5.32</td>
</tr>
<tr>
<td>Lift regression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC</td>
<td>4</td>
<td>3.05</td>
<td>2.71</td>
<td>2.3</td>
<td>2.18</td>
</tr>
<tr>
<td>DE-SIFT-MD</td>
<td>10.3</td>
<td>7.36</td>
<td>6.16</td>
<td>5.19</td>
<td>2.33</td>
</tr>
</tbody>
</table>
Conclusions

- Construct big scale CFD simulation dataset
- Compare deep learning and hand crafted based approaches
- In terms of RMSE, deep learning approaches outperform hand crafted based approaches, but not in terms of R^2
- Combination of VC and RF has the best performance (RMSE & R^2)
- As the train set size reduces, deep learning approaches manage to better maintain their performance over the hand crafted feature based approaches
Comparison of deep learning and hand crafted features for mining simulation data

Thank you!