

A Prototype-Based Generalized Zero-Shot Learning Framework for Hand Gesture Recognition

Jinting Wu

Institute of Automation, Chinese Academy of Sciences
University of Chinese Academy of Sciences

- > Introduction
- Methods
- > Results
- Conclusion

Introduction

Motivation

- Most existing works can only recognize a limited number of categories that have been seen during training.
- Generalized Zero-Shot Learning (GZSL) provides a solution for tackling the above challenges. However, GZSL approaches for dynamic hand gesture recognition are less explored.

Introduction

Contributions

- We propose an end-to-end prototype-based GZSL framework for hand gesture recognition which consists of two branches.
- We establish a hand gesture dataset that specifically targets this GZSL task.

- > Introduction
- > Methods
- > Results
- Conclusion

Methods

- Overview of the Proposed Framework
 - Two branches
 - Jointly training

Methods

- □ Prototype-Based Detector (PBD)
 - Learning prototypes for each class
 - Distance-based cross entropy loss and prototype loss $\kappa = -\gamma dis(p_{pbd}(x), m_{vi})$

$$L_{dce}((x,y)|\theta,M) = -\log \sum_{j=1}^{K} \frac{e^{-\gamma dis(p_{pbd}(x),m_{yj})}}{\sum_{k=1}^{C} \sum_{l=1}^{K} e^{-\gamma dis(p_{pbd}(x),m_{kl})}}$$
$$L_{pl}((x,y)|\theta,M) = \|p_{pbd}(x) - m_{yj}\|_{2}^{2}$$

Methods

□ Zero-Shot Label Predictor

- Using a multi-layer Semantic Auto-Encoder (SAE) to predict the unseen gestures
- Attribute loss and reconstruction loss

$$L_{attr}\left(\left(x,z_{s}\right)\middle|\theta,\phi\right)=\left\|z-z_{s}\right\|_{2}^{2}$$

$$L_{res}\left(\left(x,z_{s}\right)\middle|\theta,\phi\right)=\left\|v-v_{res}\right\|_{2}^{2}$$

Methods:

□ End-to-End Learning Objective

$$L((x, y, z_s)|\theta, M, \phi) = L_{dce} + \lambda_1 L_{pl} + \lambda_2 L_{attr} + \lambda_3 L_{attr}$$

■ Label Prediction

- Comparing the minimum distance in the prototype space $d_m(x)$ with the thresholds Th(x).
- **Seen categories:** PBD result $\varepsilon(x)$
- Unseen categories: SAE result $\varepsilon_u(x)$

$$label(x) = \begin{cases} \varepsilon(x), d_m(x) \leq Th(x) \\ \varepsilon_u(x), d_m(x) > Th(x) \end{cases}$$

- > Introduction
- Methods
- > Results
- Conclusion

Results

- Dataset
 - 16 seen gestures and 9 unseen gestures
 - 11 attributes including hand movement and finger bending states

Results

■ Experimental Results

- State-of-the-art Comparisons
 - Zero-shot gesture recognition method: ESZSL¹
 - Generalized zero-shot object recognition method: CADA-VAE² and f-CLSWGAN³

Methods	Acc_s	Acc_u	Н
ESZSL [15]	77.81%	13.89%	23.57%
CADA-VAE [11]	80.00%	53.89%	64.40%
f-CLSWGAN [12]	79.79%	55.00%	65.08%
End-to-End Framework (Ours)	89.06%	58.33%	70.49%

- 1. Madapana, Naveen, and Juan Wachs. Zsgl: zero shot gestural learning.
- 2. Schonfeld, Edgar, et al. Generalized zero-and few-shot learning via aligned variational autoencoders.
- 3. Xian, Yongqin, et al. Feature generating networks for zero-shot learning.

Results

■ Experimental Results

- Ablation Analysis
 - The traditional SAE¹ without the prototype-based detector
 - The framework with a fixed threshold
 - The framework where two branches are trained separately

Methods	Acc_s	Acc_u	H	Test Time
BLSTM+SAE [6]	91.88%	15.00%	25.79%	0.023s
End-to-End Framework (Fixed Threshold)	84.69%	50.56%	63.31%	0.022s
PBD+SAE	90.63%	57.22%	70.15%	0.026s
End-to-End Framework	89.06%	58.33%	70.49%	0.022s

^{1.} Kodirov, Elyor, Tao Xiang, and Shaogang Gong. Semantic autoencoder for zero-shot learning.

- > Introduction
- Methods
- **Results**
- > Conclusion

Conclusion

- □ A prototype-based GZSL framework for hand gesture recognition
 - An end-to-end framework with two branches
 - A novel hand gesture dataset
 - Comprehensive experiments demonstrate the effectiveness of our proposed approach

Thanks for your attention!

- > Jinting Wu
- ➤ Institute of Automation, Chinese Academy of Sciences; University of Chinese Academy of Sciences
- E-mail: wujinting2016@ia.ac.cn