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Introduction A

[0 Motivation

® Most existing works can only recognize a limited
number of categories that have been seen during
training.

B Generalized Zero-Shot Learning (GZSL) provides a
solution for tackling the above challenges. However,
GZSL approaches for dynamic hand gesture
recognition are less explored.



Introduction A

0 Contributions

B We propose an end-to-end prototype-based GZSL
framework for hand gesture recognition which
consists of two branches.

B We establish a hand gesture dataset that
specifically targets this GZSL task.
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Methods A

0 Overview of the Proposed Framework
B Two branches
B Jointly training
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Methods

O Prototype-Based Detector (PBD)

B Learning prototypes for each class

B Distance-based cross entropy loss and prototype
loss o7 is(Pwa (5)m)
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Methods

O Zero-Shot Label Predictor

B Using a multi-layer Semantic Auto-Encoder (SAE) to
predict the unseen gestures

H Attribute loss and reconstruction loss
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Methods:

O End-to-End Learning Objective
B L((xyz)|0.M.¢)=L
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0 Label Prediction

B Comparing the minimum distance in the

prototype space d,.(x) with the thresholds Th(x).

B Seen categories: PBD result ¢(x)
B Unseen categories: SAE result ¢,(x)
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Results

[0 Dataset

B 16 seen gestures and 9 unseen gestures

H 11 attributes including hand movement and finger

bending states
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Results A

O Experimental Results

B State-of-the-art Comparisons
® Zero-shot gesture recognition method: ESZSL"
® Generalized zero-shot object recognition method: CADA-

VAE2? and f-CLSWGANS3
Methods Accg Accy H
ESZSL [15] T771.81% | 13.89% | 23.57%
CADA-VAE [11] 80.00% | 53.89% | 64.40%
f-CLSWGAN [12] 79.79% | 55.00% | 65.08%
End-to-End Framework (Ours) | 89.06% | 58.33% | 70.49%

1. Madapana, Naveen, and Juan Wachs. Zsgl: zero shot gestural learning.
2. Schonfeld, Edgar, et al. Generalized zero-and few-shot learning via aligned variational autoencoders.
3. Xian, Yongqin, et al. Feature generating networks for zero-shot learning. 19



Results

O Experimental Results

B Ablation Analysis

® The traditional SAE" without the prototype-based detector
® The framework with a fixed threshold
® The framework where two branches are trained separately

Methods Aces Acey, H Test Time
BLSTM+SAE [6] 91.88% | 15.00% | 25.79% 0.023s
End-to-End Framework (Fixed Threshold) | 84.69% | 50.56% | 63.31% 0.022s
PBD+SAE 90.63% | 57.22% | 70.15% 0.026s
End-to-End Framework 89.06% | 58.33% | 70.49% 0.022s

1. Kodirov, Elyor, Tao Xiang, and Shaogang Gong.

Semantic autoencoder for zero-shot learning.
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Conclusion A

O A prototype-based GZSL framework for hand
gesture recognition

B An end-to-end framework with two branches
B A novel hand gesture dataset

B Comprehensive experiments demonstrate the
effectiveness of our proposed approach
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