On learning Random Forests for Random Forest-clustering

Manuele Bicego, Francisco Escolano
University of Verona (Italy), Universidad de Alicante (Spain)
manuele.bicego@univr.it, sco@dccia.ua.es
Random Forest Clustering

- Random Forests: powerful and interpretable tools based on aggregation of decision trees
- Main exploitation: classification and regression

In other scenarios, such as clustering, they have been less investigated.
Random Forest Clustering

- Main RF-clustering approaches:
 - Methods based on direct exploitation of RF (or RF-like schemes) to get clustering
 - Methods which exploit description capabilities of RF to derive a dissimilarity measure (to be used with standard distance-based clustering methods)
Random Forest Clustering

• Main RF-clustering approaches:
 • Methods based on direct exploitation of RF (or RF-like schemes) to get clustering
 • Methods which exploit description capabilities of RF to derive a dissimilarity measure (to be used with standard distance-based clustering methods)
The general scheme

Objects to be clustered

\[
X = \begin{bmatrix}
 x_{11} & \cdots & x_{1N} \\
 \vdots & \ddots & \vdots \\
 x_{d1} & \cdots & x_{dN}
\end{bmatrix}
\]
The general scheme

Objects to be clustered

\[X = \begin{bmatrix} x_{11} & \cdots & x_{1N} \\ \vdots & \ddots & \vdots \\ x_{d1} & \cdots & x_{dN} \end{bmatrix} \]

Random Forest

STEP 1: Build a Random Forest on \(X \)
The general scheme

Objects to be clustered

\[
X = \begin{bmatrix}
 x_{11} & \cdots & x_{1N} \\
 \vdots & \ddots & \vdots \\
 x_{d1} & \cdots & x_{dN}
\end{bmatrix}
\]

Random Forest

STEP 1: Build a Random Forest on \(X \)

Problem: no labels!

Classic approach:
Generate negative class + classification Random Forest
The general scheme

Objects to be clustered

\[
X = \begin{bmatrix}
 x_{11} & \cdots & x_{1N} \\
 \vdots & \ddots & \vdots \\
 x_{d1} & \cdots & x_{dN}
\end{bmatrix}
\]

STEP 2: Extract a dissimilarity between points through the RF

Random Forest

Dissimilarity Matrix

\[
D = [\text{dis}(x_i, x_j)]
\]
The general scheme

Objects to be clustered

\[
X = \begin{bmatrix}
 x_{11} & \cdots & x_{1N} \\
 \vdots & \ddots & \vdots \\
 x_{d1} & \cdots & x_{dN}
\end{bmatrix}
\]

STEP 2: Extract a dissimilarity between points **through** the RF

Example: two points are similar if, in the different RF trees, they fall **very often** in the same leaf (similar answers to tests)
The general scheme

Objects to be clustered

\[
X = \begin{bmatrix}
x_{11} & \cdots & x_{1N} \\
\vdots & \ddots & \vdots \\
x_{d1} & \cdots & x_{dN}
\end{bmatrix}
\]

STEP 3: Clustering via any distance-based clustering method

Example: Spectral Clustering

Distance-based clustering method

\[
D = [\text{dis}(x_i, x_j)]
\]
The general scheme

Objects to be clustered

\[X = \begin{bmatrix} x_{11} & \cdots & x_{1N} \\ \vdots & \ddots & \vdots \\ x_{d1} & \cdots & x_{dN} \end{bmatrix} \]

Random Forest

Partition

\[C^1 \quad C^2 \quad \cdots \quad C^K \]

Distance-based clustering method

Dissimilarity Matrix

\[D = [\text{dis}(x_i, x_j)] \]
Our Focus

Objects to be clustered

\[
X = \begin{bmatrix}
 x_{11} & \cdots & x_{1N} \\
 \vdots & \ddots & \vdots \\
 x_{d1} & \cdots & x_{dN}
\end{bmatrix}
\]

Random Forest

Partition

\[C^1 \quad C^2 \quad \vdots \quad C^K\]

Distance-based clustering method

\[D = [\text{dis}(x_i, x_j)]\]
Learning Random Forests

- **STEP 1** (Learning of RF) has received poor attention by researchers (main efforts are on **STEP 2**)
 - Most of the cases: generation of a synthetic negative class plus training of a standard classification RF
 - Few others: use of completely randomized RF (as in Extremely Randomized Trees [Geurts et al, ML06])

- Our position: **this step is crucial!**
Learning Random Forests

- **Our contributions:**
 - We propose two novel solutions for learning RF in RF-clustering
 - We perform a thorough experimental evaluation to show that a proper learning of RF is fundamental in RF clustering
 - We derive a set of guidelines to suggest the proper learning depending on the given dataset
Contribution 1: novel learning schemes

- Gaussian Density Random Forests

 - Random Forests designed for density estimation (Criminisi et al 2012) but never used for RF-clustering
 - Trees are built so that in each node the **Gaussian entropy** is maximized
 - Assumption: data in each node follow a Gaussian distribution
Contribution 1: novel learning schemes

- Rényi Random Forests
 - Novel Random Forests we introduce in this paper
 - Trees are built so that in each node the Renyi entropy is maximized
 - The Renyi entropy is estimated using *non parametric* bypass entropy estimator
 - Appropriate when the Gaussianity assumption is too strict

All details are in the paper!
Contribution 2: thorough experimental evaluation

- We employed 8 standard UCI-ML datasets
- We analyse different options for all the steps
 - **STEP 1**: 4 learning strategies (ClassRF, RandRF, GaussRF and RenyiRF), with different parametrizations
 - **STEP 2**: 4 different distances
 - Shi: [Shi et al 2006]
 - Zhu2, Zhu3: [Zhu et al, CVPR14]
 - Ting: [Ting et al, KDD16]
 - **STEP 3**: 3 different distance-based methods
 - Spectral clustering, Affinity Propagation, Hierarchical clustering (Ward-Link)
Results

- All the numbers are in the paper!
- Main findings:
 - The classic learning scheme is hardly the best solution (in less than 2% of the cases)
 - Random Forests based on data entropy (Gaussian or Rényi) seem to be very promising
 - Also random training works adequately well, especially for high dimensional datasets
Contribution 3: guidelines for RF-clustering

- We provide suggestions for all STEPS of RF-clustering (details in the paper)

- For the learning:
 - If the problem is highly dimensional → use the Random-RF scheme;
 - If the problem is low dimensional:
 - Train with Gauss-RF strategy
 - Check the Gaussianity of the resulting clusters (e.g. with Royston’s test);
 - If all clusters are non-Gaussian, discard the trained RF and train a RF with the Rényi-RF strategy
Conclusions

• The proper learning of Random Forests for RF-clustering is crucial

• Methods based on data entropy are adequate for low dimensional datasets

• Methods based on random mechanisms can work very well, especially in high dimensional spaces
Thanks for your attention!