uTS \$\$

GAN-based Gaussian Mixture Model Responsibility Learning

Wanming Huang, UTS Richard Yi Da Xu, UTS Shuai Jiang, UTS Xuan Liang, UTS Ian Oppermann, NSW Data Analytics Center

TS CRICOS 00099F

Motivation

- Modern dataset often contains multiple unlabeled modes
- Gaussian Mixture Model models such datasets
- Important statistics can be retrieved, e.g, soft clustering membership, weights of each component

Challenge

• Complex and high dimensional data, such as images, does not form mixture naturally

Solution

 \succ Transform the data x into its latent representation z deterministically

➤ Model *z* with Gaussian Mixture

o A natural choice is variational auto-encoder, however, VAEs often lead to blur images

Generative adversarial nets

Challenge

 $\,\circ\,$ The generation process of GANs is one-directional

 \succ Posterior consistency module (PCM) maps x to z

Posterior Consistency Module (PCM)

- Returns softmax outputs $\widehat{w} = (\widehat{w}_1, \cdots, \widehat{w}_K)$
- Makes 2 comparisons:
- $p(k|\hat{x},\theta) \& p(k|x,\theta)$
- $p(k|\hat{x},\theta) \& p(k|z,\theta)$

•
$$p(k|z,\theta) = w \equiv (w_1, \cdots, w_K) = (\frac{N(z|\mu_1, \sigma_1)}{\sum_{k=1}^K N(z|\mu_k, \sigma_k)}, \cdots, \frac{N(z|\mu_K, \sigma_K)}{\sum_{k=1}^K N(z|\mu_k, \sigma_k)})$$

GAN

Ideally, samples generated from the same Gaussian should be similar, however, such correspondence cannot be controlled in an unsupervised training

Therefore, during training, *K* samples are generated from *K* modes, weights of each are measured by PCM

$$\mathcal{L}^{adversarial} = \mathbb{E}_{x_i \sim p_{data}} \left(\frac{1}{K} \sum_{k=1}^{K} p(k|x_i, \theta) \times (\log D(x_i) + \log(1 - D(\hat{x}^k))) \right)$$

Architecture

Performance on highly imbalanced dataset

8	T	6	0	1	К	P	Ø	3	۵
)	Ъ	4	3	7	' ړ	7	2	$\boldsymbol{\partial}$	δ
1	X	Z	8	Ŕ	1	7	Ø	8	9
F	1	7	Ð	0	L.	7	В	1	1
Ø	Ł	1	ž	3	Ŀ	1	X	б	s
1	Ł	0	4	Ł	٩	l	1	l	7
4	1	4	9	8	Q	1	5	10	Ø
J	Ħ	Q	1	L	1	3	1	1	4
1	1	3	3		3	ų	1	1	1
ý,	1	B	1	L	}	τ	Э	7	7

Vanilla GAN

Gaussian Mixture GAN w/o PCM

Proposed method

Generation quality

	number of parameters	Inception Score \uparrow	FID score \downarrow
Proposed (encoding not shared) Proposed (encoding shared) GM-GAN Vanilla GAN	$\begin{array}{c} 13,005,411\\ 8,794,835\\ 8,467,145\\ 8,366,145\end{array}$	$\begin{array}{c} 2.9664 \pm 0.2188 \\ \textbf{3.1368} \pm \textbf{0.1596} \\ 2.6770 \pm 0.1079 \\ 2.4882 \pm 0.1065 \end{array}$	$\begin{array}{c} 231.0577 \pm 7.5371 \\ \textbf{205.9776} \pm \textbf{7.8587} \\ 239.3936 \pm 6.7672 \\ 247.0610 \pm 7.2361 \end{array}$

Linear interpolation over 3 modes

