GAN-based Gaussian Mixture Model Responsibility Learning

Wanming Huang, UTS
Richard Yi Da Xu, UTS
Shuai Jiang, UTS
Xuan Liang, UTS
Ian Oppermann, NSW Data Analytics Center
Motivation

• Modern dataset often contains multiple unlabeled modes
• Gaussian Mixture Model models such datasets
• Important statistics can be retrieved, e.g., soft clustering membership, weights of each component
Challenge

• Complex and high dimensional data, such as images, does not form mixture naturally
Solution

- Transform the data x into its latent representation z deterministically
- Model z with Gaussian Mixture

- A natural choice is variational auto-encoder, however, VAEs often lead to blur images
- Generative adversarial nets
Challenge

- The generation process of GANs is one-directional

- Posterior consistency module (PCM) maps x to z
Posterior Consistency Module (PCM)

• Returns softmax outputs \(\hat{w} = (\hat{w}_1, \cdots, \hat{w}_K) \)

• Makes 2 comparisons:

 • \(p(k|\hat{x}, \theta) \) & \(p(k|x, \theta) \)

 • \(p(k|\hat{x}, \theta) \) & \(p(k|z, \theta) \)

 • \(p(k|z, \theta) = w \equiv (w_1, \cdots, w_K) = \left(\frac{N(Z|\mu_1, \sigma_1)}{\sum_{k=1}^{K} N(Z|\mu_k, \sigma_k)}, \cdots, \frac{N(Z|\mu_K, \sigma_K)}{\sum_{k=1}^{K} N(Z|\mu_k, \sigma_k)} \right) \)
GAN

Ideally, samples generated from the same Gaussian should be similar, however, such correspondence cannot be controlled in an unsupervised training.

Therefore, during training, K samples are generated from K modes, weights of each are measured by PCM.

$$\mathcal{L}_{\text{adversarial}} = \mathbb{E}_{x_i \sim p_{\text{data}}} \left(\frac{1}{K} \sum_{k=1}^{K} p(k|x_i, \theta) \times (\log D(x_i) + \log(1 - D(\hat{x}^k))) \right)$$
Architecture
Performance on highly imbalanced dataset

Vanilla GAN

Gaussian Mixture GAN w/o PCM

Proposed method
Generation quality

<table>
<thead>
<tr>
<th></th>
<th>number of parameters</th>
<th>Inception Score \uparrow</th>
<th>FID score \downarrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed (encoding not shared)</td>
<td>13,005,411</td>
<td>2.9664 ± 0.2188</td>
<td>231.0577 ± 7.5371</td>
</tr>
<tr>
<td>Proposed (encoding shared)</td>
<td>8,794,835</td>
<td>3.1368 ± 0.1596</td>
<td>205.9776 ± 7.8587</td>
</tr>
<tr>
<td>GM-GAN</td>
<td>8, 467, 145</td>
<td>2.6770 ± 0.1079</td>
<td>239.3936 ± 6.7672</td>
</tr>
<tr>
<td>Vanilla GAN</td>
<td>8,366,145</td>
<td>2.4882 ± 0.1065</td>
<td>247.0610 ± 7.2361</td>
</tr>
</tbody>
</table>
Linear interpolation over 3 modes