Multi-Laplacian GAN with Edge Enhancement for Face Super Resolution

Shanlei Ko, Bi-Ru Dai
Outline

▪ Introduction
▪ Proposed Method
▪ Experiments
▪ Conclusions and Future Works
Introduction

- **Super Resolution (SR) Problem**
 - Generate a high-resolution (HR) face image from an LR one
 - Why is it important?
 - Applications: Remote sensing, medical diagnostic, intelligent surveillance etc.
 - Recover details of HR from LR

- **Face SR Major challenges**
 - Missing information: Identities, five senses, facial attributes, etc
 - Ill-posed problems: two different high resolution images are possible to be downsamped to two similar low resolution images.

![Diagram showing Super Resolution process]

- 8 × Downsampling
- 16 × 16 LR
- 8 × SR
- 128 × 128 SR

128 × 128 HR
Contribution

- Propose the Multi-Laplacian GAN with Edge enhancement (MLGE)

- MLGE
 - Model Generalization
 - No additional prior facial information is required in both training and testing phases for our model
 - Enhance the quality
 - MLGE achieves higher quantitative and qualitative performance.
Outline

- Introduction
- Proposed Method
- Experiments
- Conclusions and Future Works
MLGE Architecture-Discriminative Branch

- The general discriminator D_{h^8} determines whether
 - the $8 \times$ SR \hat{h}^8 is similar to HR face images h^8
- The objective function for the general discriminator is expressed as:
 - $L_{D_{h^8}} = -E[\log D_{h^8}(h^8) + \log(1 - D_{h^8}(\hat{h}^8))]$
MLGE Architecture-Discriminative Branch

- Two edge discriminators D_{e^s} determine whether
 - the gradients of SR images \hat{e}^s are similar to the gradient of HR face images e^s in each scale s.
- The objective function for general discriminator is expressed as:
 - $L_{D_{e^s}} = -E[\log D_{e^s}(e^s) + \log (1 - D_{e^s}(\hat{e}^s)), s = 4, 8$
Outline

- Introduction
- Related Works
- Proposed Method
- Experiments
- Conclusions and Future Works
Experiment Settings

▪ Datasets:
 ▪ Celebrity Face Attributes (CelebA) dataset
 ▪ 202,599 human face images with labeled 40 facial attributes, landmarks.

▪ Training data and testing data:
 ▪ 22K face images as training
 ▪ 2.6K face images as testing
 ▪ Resize to 128×128 as our HR images
 ▪ Downsample HR images to 16×16 as our LR images
Experiment Settings (cont.)

- **Comparison methods**
 - Traditional upsampling method
 - VDSR (CVPR 2016)
 - CNN based method
 - SRGAN (CVPR 2017)
 - GAN-based method
 - Yu et al (CVPR 2018) (attributes)
 - Conditional GAN based
 - Training images only include face region

- **Evaluate metrics**
 - PSNR (The average Peak Signal to Noise Ratio)
 - SSIM (The Structure Similarity Score)
Method comparison

- Quantitative Comparison
 - MLGE outperforms other methods with large margins in PSNR and SSIM

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSNR</td>
<td>21.76</td>
<td>23.12</td>
<td>23.76</td>
<td>22.85</td>
<td>25.07</td>
</tr>
<tr>
<td>SSIM</td>
<td>0.72</td>
<td>0.80</td>
<td>0.78</td>
<td>0.753</td>
<td>0.83</td>
</tr>
</tbody>
</table>

- Qualitative Comparison
Method comparison

- **Quantitative Comparison**
 - MLGE outperforms other methods with large margins in PSNR and SSIM

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSNR</td>
<td>21.76</td>
<td>23.12</td>
<td>23.76</td>
<td>22.85</td>
<td>25.07</td>
</tr>
<tr>
<td>SSIM</td>
<td>0.72</td>
<td>0.80</td>
<td>0.78</td>
<td>0.753</td>
<td>0.83</td>
</tr>
</tbody>
</table>
Conclusions and Future Works

- **MLGE algorithm**
 - Generalization
 - No additional prior facial information is required in both training and testing phases
 - Enhance the quality
 - Outperform the state-of-the-arts both in quantitatively and qualitatively
 - Generates SR images which have almost the same facial attributes as HR images

- **Future works**
 - Explore better information extraction methods
 - Principal component analysis (PCA) and fast fourier transform
 - Extend MLGE to large scale SR task, such as 256 × 256 LR images
Thank you