Multi-Laplacian GAN with Edge Enhancement for Face Super Resolution

Shanlei Ko, Bi-Ru Dai

NATIONAL TAIWAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

25th International Conference on Pattern Recognition IEEE ICPR 2020

Outline

- Introduction
- Proposed Method
- Experiments
- Conclusions and Future Works

Introduction

- Super Resolution (SR) Problem
 - Generate a high-resolution (HR) face image from an LR one
 - Why is it important?
 - Applications: Remote sensing, medical diagnostic, intelligent surveillance etc.
 - Recover details of HR from LR
 - Face SR Major challenges
 - Missing information: Identities, five senses, facial attributes, etc
 - Ill-posed problems: two different high resolution images are possible to be downsampled to two similar low resolution images.

Contribution

Propose the Multi-Laplacian GAN with Edge enhancement (MLGE)

MLGE

- Model Generalization
 - No additional prior facial information is required in both training and testing phases for our model
- Enhance the quality
 - MLGE achieves higher quantitative and qualitative performance.

Outline

Introduction

Proposed Method

- Experiments
- Conclusions and Future Works

MLGE Architecture

MLGE Architecture-Discriminative Branch

- The general discriminator D_{h^8} determines whether
 - the 8 × SR \hat{h}^8 is similar to HR face images h^8
- The objective function for the general discriminator is expressed as:

•
$$L_{D_{h^8}} = -E[log D_{h^8}(h^8) + log(1 - D_{h^8}(\hat{h}^8))]$$

MLGE Architecture-Discriminative Branch

- Two edge discriminators D_{e^s} determine whether
 - the gradients of SR images ê^s are similar to the gradient of HR face images e^s in each scale S.
- The objective function for general discriminator is expressed as:

• $L_{D_{e^s}} = -E[log D_{e^s}(e^s) + log(1 - D_{e^s}(\hat{e}^s)], s = 4, 8$

Gradients

Edge Discriminator

Outline

- Introduction
- Related Works
- Proposed Method

Experiments

Conclusions and Future Works

Experiment Settings

Datasets:

- Celebrity Face Attributes (CelebA) dataset
 - 202,599 human face images with labeled 40 facial attributes, landmarks.

Training data and testing data:

- 22K face images as training
- 2.6K face images as testing
- Resize to 128 × 128 as our HR images
- Downsample HR images to 16 × 16 as our LR images

Experiment Settings (cont.)

Comparison methods

- Bicubic (IEEE Trans. Signal Process.1981)
 - Traditional upsampling method
- VDSR (CVPR 2016)
 - CNN based method
- SRGAN (CVPR2017)
 - GAN-based method
- Yu et al (CVPR 2018) (attributes)
 - Conditional GAN based
 - Training images only include face region
- Evaluate metrics
 - PSNR (The average Peak Signal to Noise Ratio)
 - SSIM (The Structure Similarity Score)

Method comparison

Quantitative Comparison

MLGE outperforms other methods with large margins in PSNR and SSIM

Method	Bicubic [23]	VDSR [12]	SRGAN [21]	Yu et al [8]	MLGE
PSNR SSIM	$21.76 \\ 0.72$	$\begin{array}{c} 23.12\\ 0.80 \end{array}$	$\begin{array}{c} 23.76\\ 0.78\end{array}$	$22.85 \\ 0.753$	25.07 0.83

VDSR

Qualitative Comparison

Bicubic

LR

SRGAN

HR

MLGE

Yu et al

Method comparison

Quantitative Comparison

MLGE outperforms other methods with large margins in PSNR and SSIM

Method	Bicubic [23]	VDSR [12]	SRGAN [21]	Yu et al [8]	MLGE
PSNR SSIM	$21.76 \\ 0.72$	$\begin{array}{c} 23.12\\ 0.80 \end{array}$	$\begin{array}{c} 23.76 \\ 0.78 \end{array}$	$22.85 \\ 0.753$	25.07 0.83

Qualitative Comparison

	LR	Bicubic	VDSR	SRGAN	Yu <i>et al</i>	MLGE	HR
--	----	---------	------	-------	-----------------	------	----

Conclusions and Future Works

MLGE algorithm

- Generalization
 - No additional prior facial information is required in both training and testing phases
- Enhance the quality
 - Outperform the state-of-the-arts both in quantitatively and qualitatively
 - Generates SR images which have almost the same facial attributes as HR images

Future works

- Explore better information extraction methods
 - Principal component analysis (PCA) and fast fourier transform
 - Extend MLGE to large scale SR task, such as 256 × 256 LR images

Thank you