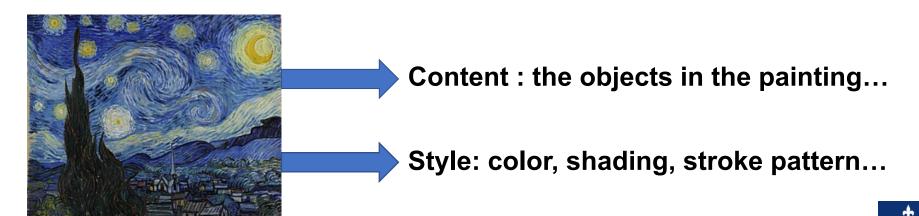
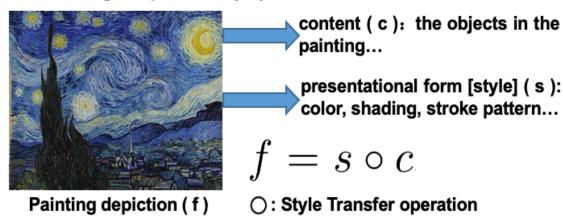


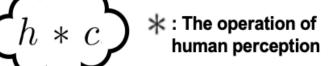
Bingqing Guo, Pengwei Hao Queen Mary University of London

- **Motivation:** Single style transfer is very popular recently. However, few works systematically discussed the interpolated styles generated by multistyle transfer.
- **Tasks:** We generalize the style transfer problem as a series of solvable objective optimization problems. Then we construct a style space (Interactive Style Space, ISS) which enables systematic style innovation using interpolation of known styles.
- **Key idea:** Utilize the low-level features and high-level features of paintings. Perform style interpolation to explore unknown styles in a style space based on Wasserstein distance.



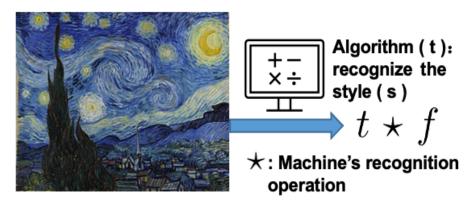
University of London


- Low-level features: such as color, shading, stroke pattern and many more
- Middle-level features: such as geometry, perspective, line style and many more
- High-level features: such as decomposition, objects presence and several others



Painting Depiction (f)

Human Perception (h)



Human perception (h) towards the content (c)

Expanded Generalization

For a meaningful artwork, the human perceived depiction h * f should be as close as possible to the human perceived content h * c:

$$\min_{f} \|h * f - h * c\|_{a} = \min_{f} \|h * (s \circ c) - h * c\|_{a}$$
 (1)

For the specific form of paintings with a style, the form recognized from the depiction t * f should be as close as to the style s:

$$\min_{f} \|t \star f - s\|_{b} = \min_{f} \|t \star (s \circ c) - s\|_{b}$$
 (2)

Style Transfer Problem Generalization

Then, we can formulate the artistic painting depiction as a multiple objective optimization problem (Image Stylization problem):

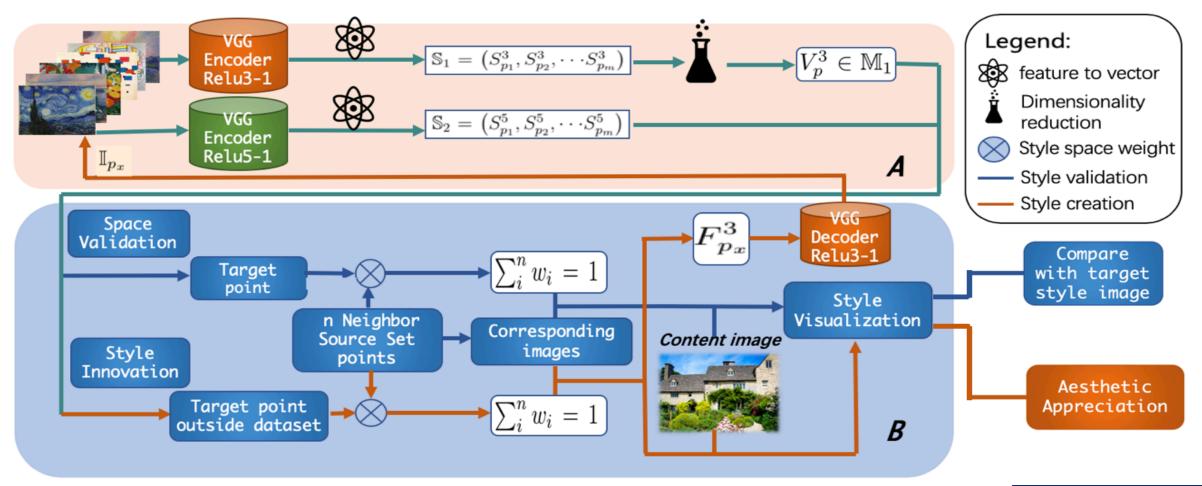
$$f^* = argmin_f \{ \|h * f - h * c\|_a, \|t * f - s\|_b \} = argmin_f \{ \|h^{'} * (s \circ c) - h * c\|_a, \|t * (s \circ c) - s\|_b \}$$
(3)

Add the positive constant α, the above problem can be implemented as a single objective optimization problem:

$$f^{\star} = argmin_{f} \left\{ \left\| h * f - h * c \right\|_{a} + \alpha \left\| t \star f - s \right\|_{b} \right\} = argmin_{f} \left\{ \left\| h * (s \circ c) - h * c \right\|_{a} + \alpha \left\| t \star (s \circ c) - s \right\|_{b} \right\} \tag{4}$$

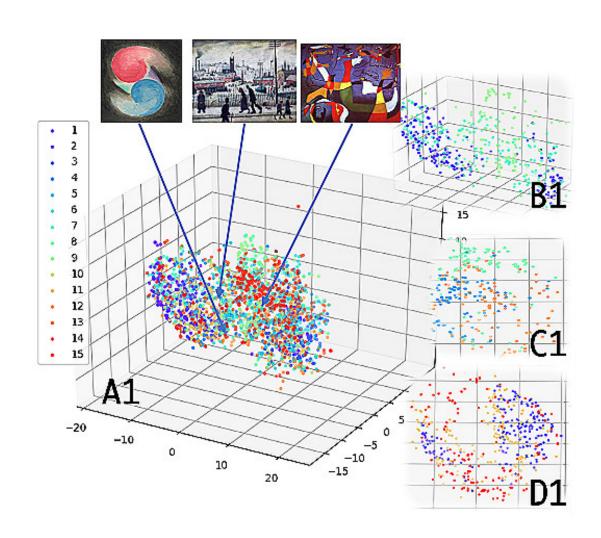
Style Innovation problem:

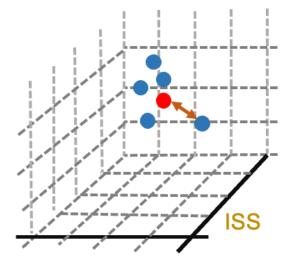
To compare the similarity of styles (s1 and s2) between two images (f1 and f2) with contents (c1 and c2):


$$||t \star f_1 - t \star f_2||_b = ||t \star (s_1 \circ c_1) - t \star (s_2 \circ c_2)||_b$$
 (5)

 $\|*\|_b$ measures the similarity/difference between two styles. For innovation problem, the difference between s1 and s2 should as large as possible.

The Framework of Our Method





Interactive Style Space (ISS) Validation

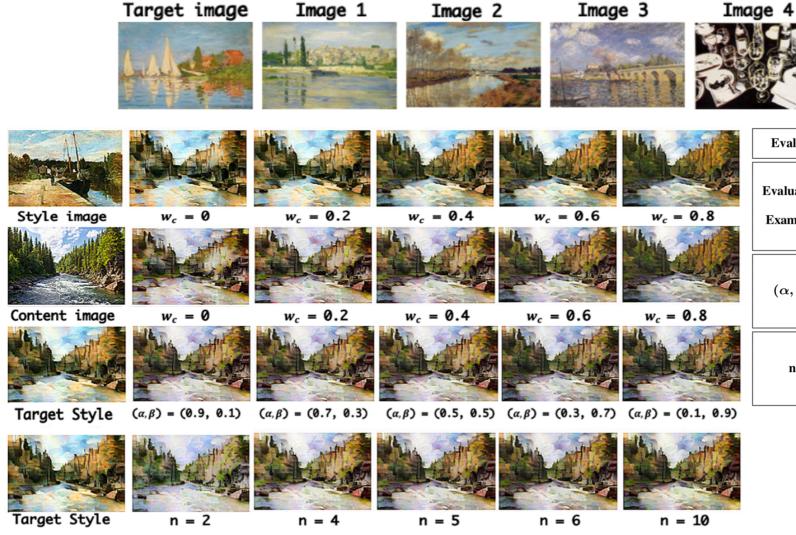
- Target point (pi)
- N neighbor source points (pn). (in this example, N=5)
- Euclidean distance between Target point and Source point

 S_N^5 Normalized 5th layer Style Vector

$$V_p^n = (x_p^n, y_p^n, z_p^n), n = 3$$
 (6)

$$d_{ix} = \alpha Dis \left(V_{p_i}^3, V_{p_x}^3 \right) + \beta Dis \left(S_{Np_i}^5, S_{Np_x}^5 \right), \ \alpha + \beta = 1$$
 (7)

$$w_i = d_{ix}^{-1} / \left(\sum_{i=1}^{n} d_{ix}^{-1} \cdot (1 - w_c) \right)$$
(8)


• Style visualization: Wasserstein Style Transfer [1]:

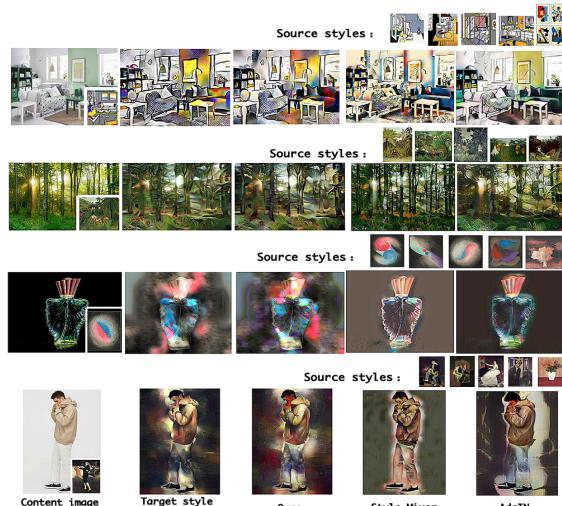
$$T_{F_c^n \to F_{p_x}^n}^{\mathfrak{W}}(x) = m_{p_x}^n + (\sigma_c^n)^{-\frac{1}{2}} \left[(\sigma_c^n)^{\frac{1}{2}} (\sigma_{p_x}^n) (\sigma_c^n)^{\frac{1}{2}} \right] (\sigma_c^n)^{-\frac{1}{2}} \cdot (x - m_c^n)$$
(9)
$$I_{p_x}^n = D^n \left(T_{F_c^n \to F_{p_x}^n}^{\mathfrak{W}}(E^n (I_c)) \right)$$
(10)

Quantitative Evaluation and Comparison of Validation Results

Evaluation Quality		Pixel-wise Mse	Wasserstein Distance	Style vector ReLU3-1	Style vector ReLU5-1
	Image 1	9.2958	0.0112	0.1484	0.4666
Evaluation	Image 2	12.0209	0.0145	0.1256	0.5684
	Image 3	10.3374	0.0104	0.1883	0.4888
Examples	Image 4	40.3908	0.2044	0.4748	0.7733
	Image 5	42.5435	0.1725	0.3391	0.7003
	Image 6	43.0349	0.2319	0.7763	0.8544
(lpha,eta)	(0.9,0.1)	1.9675	0.0196	0.0334	0.1656
	(0.7,0.3)	1.9626	0.0196	0.0328	0.1674
	(0.5,0.5)	1.9669	0.0196	0.0338	0.1659
	(0.3,0.7)	2.2530	0.0189	0.0325	0.1541
	(0.1,0.9)	2.2148	0.0205	0.0255	0.1329
n	2	3.6548	0.0242	0.0542	0.1684
	4	2.3035	0.0206	0.0394	0.1879
	5	1.9626	0.0196	0.0338	0.1674
	6	1.9683	0.0195	0.0299	0.1537
	10	2.3225	0.0217	0.0293	0.1481

Image 6

Image 5


Quantitative Evaluation and Comparison of Validation Results

and style image

result

Ours

Style Mixer

AdaIN

Style Innovation Examples

