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Main research problem statement ICPR

« Motivation: Single style transfer is very popular recently. However, few
works systematically discussed the interpolated styles generated by multi-
style transfer.

« Tasks: We generalize the style transfer problem as a series of solvable
objective optimization problems. Then we construct a style space
(Interactive Style Space, ISS) which enables systematic style innovation
using interpolation of known styles.

« Key idea: Utilize the low-level features and high-level features of paintings.
Perform style interpolation to explore unknown styles in a style space
based on Wasserstein distance.
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Image Features Introduction ICPR

* Low-level features: such as color, shading, stroke pattern and
many more

« Middle-level features: such as geometry, perspective, line style
and many more

* High-level features: such as decomposition, objects presence
and several others

Content : the objects in the painting...

Style: color, shading, stroke pattern...

‘@_4 Queen Mary

University of London



Style Transfter Problem Generalization ICPR

® Painting Depiction ( f) ® Human Perception ( h)

content ( ¢ ): the objects in the
painting...

i ’ % : The operation of
S 7 human perception
presentational form [style] ( s ):

color, shading, stroke pattern... (0] °
f = S0O0¢C
Painting depiction ( f) QO : Style Transfer operation Human perception ( h ) towards the content (¢ )

® Expanded Generalization

© For a meaningful artwork, the human perceived depiction h * f should be as close as
possible to the human perceived content h * c:

Algorithm ( t): . .
;'(': recognize the m}%n”h*f—h*CHa =m;’n||h*(800)—h*0||a (1)
1L Sty;; (;) f @ For the specific form of paintings with a .style, the form recognized from the depiction t x f
should be as close as to the style s:
* : Machine’s recognition mfm [t * f— s, = mfm [tx (soc)— s, (2)

operation
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Style Transfer Problem (Generalization ICPR

Then, we can formulate the artistic painting depiction as a multiple objective optimization problem (Image Stylization problem ):

fr= argm];m{Hh «f—hxc|, |t f—sl,}= argmfin {Ih*(soc)—hxc|,,|[tx(soc)—s[,} (3)
Add the positive constant a, the above problem can be implemented as a single objective optimization problem:

= argm}m {{|h*f—hxc|, +alltxf—s|,}= argmfz'n{Hh x(soc)—hxc||, +altx(soc)—s|,} 4)

© Style Innovation problem:

a’

To compare the similarity of styles ( s1 and s2 ) between two images ( f1 and f2 ) with contents ( ¢1 and c2 ):

[tx fr =tx folly, = [t (s10c1) = tx (sa0¢a)l (5)

H*” measures the similarity/difference between two styles. For innovation problem, the difference between s1 and s2 should as
b large as possible.
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The Framework of Our Method ICPR
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Interactive Style Space (ISS) Validation
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[1]1Y. Mroueh, “Wasserstein style transfer,” arXiv preprint arXiv:1905.12828, 2019.
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@ Style visualization: Wasserstein Style Transfer [1]:
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Quantitative Evaluation and Comparison of
Validation Results

Target image Image 1

. . . . Wasserstein | Style vector | Style vector

Evaluation Quality Pixel-wise Mse Distance ReLU3-1 ReLU5-1

Image 1 9.2958 00112 0.1484 0.4666

Evaluation | 1mage 2 12.0209 0.0145 0.1256 0.5684

7o S, Tmage 3 10.3374 0.0104 0.1883 0.4888
St 1e image Tmage 4 40.3908 0.2044 0.4748 0.7733
24 ,Ag : Examples | e 42,5435 0.1725 0.3391 0.7003
Tmage 6 43.0349 02319 0.7763 0.8544

0.9,0.1) 1.9675 0.0196 0.0334 0.1656

0.7.0.3) 1.9626 0.0196 0.0328 0.1674

(a,8) [ (035,05 1.9669 0.0196 0.0338 0.1659

L 03.0.7) 2.2530 0.0189 0.0325 0.1541
Content image 0.1,0.9) 22148 0.0205 0.0255 0.1329
: : 2 3.6548 0.0242 0.0542 0.1684
i 2.3035 0.0206 0.0394 0.1879

n 5 1.9626 0.0196 0.0338 0.1674

6 1.9683 0.0195 0.0299 0.1537

10 2.3225 0.0217 0.0293 0.1481

(aﬂ)r-(09 0.1) (aﬂ) .7, 03) (aﬁ) (05 05) (aﬂ)-(- 0.

— B e - Ty, —y———
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Quantitative Evaluation and Comparison of
Validation Results

Source styles:

Content image Target style Synthesized
and style image result style result

Target syle
result

Content image

and style image Style Mixer
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Style Innovation Examples
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