

Inception-based Deep Learning Architecture for Tuberculosis Screening using Chest X-rays

Dipayan Das
Dept. of Electronics and
Communication Engg.
National Institute of Technology
Durgapur, India
dipayan.das2010@gmail.com

K.C. Santosh
IEEE Senior Member
Dept. of Computer Science
University of South Dakota
Vermillion, SD 57069, USA
santosh.kc@ieee.org

Umapada Pal Computer Vision & Pattern Recognition Unit Indian Statistical Institute Kolkata, India umapada@isical.ac.in

Outline

- Motivation
- Contribution
- Dataset Description
- Preprocessing
- Proposed methodology
- Results and Analysis
- Conclusion

Motivation

- □ Primary need of screening TB (Tuberculosis) in resource constrained regions of the world.
- ☐ Chest X-rays are considered as promising indicators for the onset of TB, and there is an existent infrastructure of low-cost chest radiography around the world.
- ☐ Lack of skilled radiologists hinders the screening process.
- Computer vision based automated diagnosis systems offers a powerful alternative.
- Deep learning based Convolutional Neural Networks (CNNs) are adept at learning custom features from a given spatial data distribution.

Contribution

- ☐ We propose an end-to-end CNN architecture that automates the screening process of TB using chest X-rays.
- The proposed model is derived from the Inception Net V3 architecture, which makes use of multiscale feature extracting modules (Inception modules).
- The model learns TB related visual features from the chest X-ray data and performs better than the state-of-the-art deep learning methodology on the used datasets.
- ☐ We study the computational efficiency of the model from a resource perspective (availability of GPU and model size).
- The effect of input chest X-ray image size on model performance is also studied.

Dataset Description

Table I: Dataset composition

Dataset	Tuberculosis +ve	Normal		
Shenzhen, China	342	340		
Montgomery County, USA	58	80		

Normal, China Abnormal, China Normal, USA Abnormal, USA

Fig. I: Randomly sampled chest X-rays from the used datasets. Anatomical and recording instrument variability between the datasets can be well observed.

Preprocessing

Fig. II: Preprocessing pipeline

Fig. III: Sample preprocessed images

Proposed Methodology

Results and Analysis

Fold	ACC	AUC	SEN	SPEC	PREC	Fold	ACC	AUC	SEN	SPEC	PREC
1	93.93	0.96	0.91	0.96	0.96	1	83.89	0.90	0.75	0.93	0.93
2	93.93	0.94	0.93	0.93	0.93	2	89.97	0.92	0.80	0.96	0.94
3	93.93	0.99	0.94	0.93	0.94	3	79.16	0.89	0.75	0.89	0.91
4	88.05	0.94	0.85	0.90	0.90	4	96.89	0.95	0.84	0.98	0.96
5	95.45	0.95	0.94	0.96	0.96	5	86.85	0.90	0.79	0.95	0.94
6	81.81	0.94	0.75	0.87	0.86	6	88.73	0.91	0.80	0.96	0.94
7	89.55	0.95	0.88	0.90	0.90	7	82.37	0.89	0.75	0.93	0.92
8	90.90	0.94	0.87	0.93	0.93	8	90.97	0.92	0.82	0.96	0.95
9	96.96	0.97	0.97	0.96	0.97	9	91.11	0.94	0.84	0.97	0.95
10	92.42	0.98	0.87	0.96	0.96	10	84.17	0.90	0.79	0.94	0.94
μ	91.70	0.96	0.89	0.93	0.93	μ	87.47	0.92	0.76	0.95	0.95
σ	±4.16	±0.02	±0.05	±0.02	±0.03	σ	±4.3	± 0.04	± 0.05	± 0.03	± 0.03

Table II: Shenzhen, China

Table III: Montgomery County, USA

Results and Analysis

Dataset	Metric	[1]	[2]	[3]	[4]	[5]	Our Method
China	ACC	83.00	84.00	84.40	86.74	90.00	91.70
	AUC	0.92	0.92	0.90	0.92	0.94	0.96
USA	ACC	67.00	76.00	79.00	77.14		87.47
	AUC	0.88	0.83	0.81	0.90		0.92

Table IV: Comparative Study

Fig. VII: Distribution of prediction time for 100 randomly sampled CXRs.

Fig. VIII: Speed-accuracy trade-off using images of larger sizes.

Results and Analysis

Input chest X-ray images

Grad-CAM activation map overlayed on input images.

Fig. IX: Grad-CAM visualization of learnt feature maps.

Conclusion

- ☐ An end-to-end CNN model is proposed to screen TB using chest X-ray images.
- The model learns TB specific visual/texture features using convolutional kernels of varying sizes within Inception modules. This enables a multiscale analysis of the chest X-rays.
- ☐ Contrary to ensemble methods, the proposed model is computationally lighter while maintaining superior performance.
- The model is also robust to dataset variability like anatomical and chest X-ray recording instrument parameters.
- The proposed methodology provides a fast yet accurate procedure to undertake mass screening of TB in resource constrained regions of the world

References

- [1] Sangheum Hwang, Hyo-Eun Kim, Jihoon Jeong, and Hee-Jin Kim. A novel approach for tuberculosis screening based on deep convolutional neural networks. In Medical imaging 2016: computer-aided diagnosis, volume 9785, page 97852W. International Society for Optics and Photonics, 2016.
- [2] UK Lopes and Jo ao Francisco Valiati. Pre-trained convolutional neural networks as feature extractors for tuberculosis detection. Computers in biology and medicine, 89:135–143, 2017.
- [3] F Pasa, V Golkov, F Pfeiffer, D Cremers, and D Pfeiffer. Efficient deep network architectures for fast chest x-ray tuberculosis screening and visualization. Scientific reports, 9(1):1–9, 2019.
- [4] Syeda Shaizadi Meraj, Razali Yaakob, Azreen Azman, Siti Nuru-lain Mohd Rum, Azree Shahrel, Ahmad Nazri, and Nor FadhlinaZakaria. Detection of pulmonary tuberculosis manifestation in chest x-rays using different convolutional neural network (cnn) models.
- [5] Mohammad Tariqul Islam, Md Abdul Aowal, Ahmed Tahseen Min-haz, and Khalid Ashraf. Abnormality detection and localization inchest x-rays using deep convolutional neural networks. arXiv preprintarXiv:1705.09850, 2017.

Thank you!