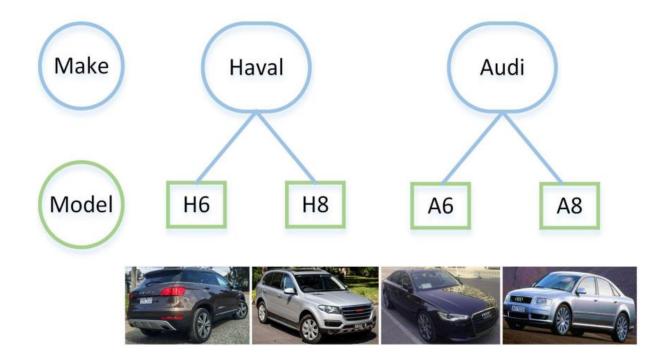
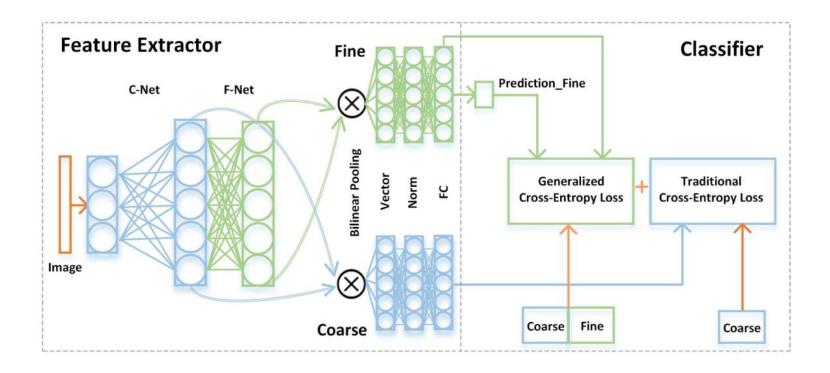
Semantic Bilinear Pooling for Fine-Grained Recognition


Xinjie Li, Chun Yang, Song-Lu Chen, Chao Zhu*, Xu-Cheng Yin

University of Science and Technology Beijing

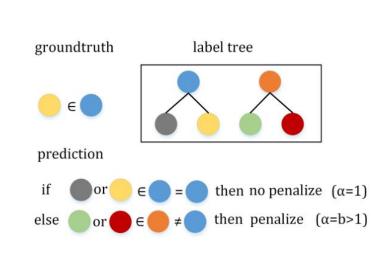
Introduction

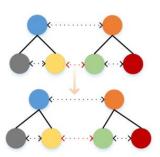

Coarse-to-fine classification

Hierarchical label tree

Methods

Two-Branch Network

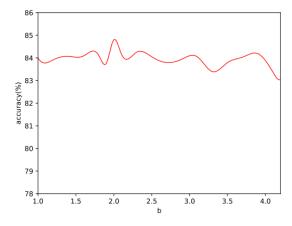

Methods


Generalized Cross-Entropy Loss Function

Illustration

Implicit meaning

$$Loss = -\sum_{i=1}^{n} \sum_{c=1}^{C} \alpha_i y_{ic} \log(a_{ic})$$


Experiments

Datasets

Effect of α

Effect of loss weight

Datasets	#Coarse	#Fine	#Train	#Val
CompCars [5]	75	431	16016	14939
StanfordCars [4]	49	196	8144	8041
CUBbirds [25]	70	200	5994	5794
Aircrafts [26]	70	100	6667	3333

r	1:1	3:2	7:3	4:1	9:1
Accuracy(%)	83.3	84.6	84.8	84.0	82.9

Experiments

Ablation Analysis

Comparison with Semantic Methods

Comparison with State-of-the-Art Methods

Backbone	Method	TB	GCE	CompCars	StanfordCars	Birds	Aircrafts
VGG16	CBP [19]	_	_	*94.0	*90.8	84.0	*87.4
	Ours w/o GCE	✓		94.3	91.3	84.3	88.2
	Ours w/o TB	İ	✓	94.7	91.6	84.5	88.9
	Ours(CBP)	✓	✓	95.2	91.9	84.8	89.3
	iSQRT-COV [24]	_	_	*96.3	92.5	87.2	90.0
	Ours w/o GCE	✓		96.7	92.9	87.4	90.6
	Ours w/o TB		✓	96.8	92.9	87.5	90.8
	Ours(iSQRT-COV)	✓	✓	97.0	93.2	87.8	91.1
ResNet50	iSQRT-COV [24]	_	_	*96.9	92.8	88.1	90.0
	Ours w/o GCE	✓		97.3	93.5	88.5	90.5
	Ours w/o TB		✓	97.4	93.7	88.3	91.2
	Ours(iSQRT-COV)	✓	✓	97.8	94.3	88.9	91.7

Backbone	Method	S-Cars	Birds
	BGL [7]	86.0	75.9
VGG16	Ours(CBP)	91.9	84.8
	Ours(iSQRT-COV)	93.2	87.8
ResNet50	CLC [6]	_	79.3
	HSE [8]	_	88.1
	Ours(iSQRT-COV)	94.3	88.9

Backbone	Method	CompCars	StanfordCars	Birds	Aircrafts
	FCAN [2]	_	89.1	82.0	_
	LRBP [18]	_	90.9	84.2	87.3
	KP [20]	_	92.4	86.2	86.9
	iBCNN [17]	_	92.0	85.8	88.5
	G ² DeNet [22]	_	92.5	87.1	89.0
	HIHCA [21]	_	91.7	85.3	88.3
VGG16	MoNet [23]	_	90.8	85.7	88.1
	SWP [11]	95.3	90.7	_	_
	BCNN [3]	*93.0	90.6	84.0	86.9
	CBP [19]	*94.0	*90.8	84.0	*87.4
	iSQRT-COV [24]	*96.3	92.5	87.2	90.0
	Ours(CBP)	95.2	91.9	84.8	89.3
	Ours(iSQRT-COV)	97.0	93.2	87.8	91.1
VGG19	RACNN [12]	_	92.5	85.3	88.2
	MACNN [31]	_	92.8	86.5	89.9
ResNet50	SWP [11]	97.5	92.3	_	_
	NTS [10]	_	93.9	87.5	91.4
	MAMC [9]	_	93.0	86.5	_
	DFL [32]	_	93.1	87.4	91.7
	KP [20]	_	91.9	84.7	85.7
	iSQRT-COV [24]	*96.9	92.8	88.1	90.0
	Ours(iSQRT-COV)	97.8	94.3	88.9	91.7