GAN-Based Image Deblurring Using DCT Discriminator

Hiroki Tomosada, Master 2
Ikehara Lab, Keio University, Japan
Background

- Image Deblurring
 - Produce clear images by image deconvolution.
 - Promote camera minimization.
 - Can restore images after filming.
Basic Theory

Ex:) Lena, Blur strength size=21

\[I_B = k \otimes I_S + n \]

It is difficult to Estimate Original Image...
Conventional Method

- Non-Blind Image deblurring.
 - Kernel Estimation
- Blind Image deblurring.
 - CNN Based Methods

CNN-Based Methods

- CNN Using GAN
- Single Encoder Decoder Architecture
- Multi-Scale Architecture

Problem

- Multi-Scale and Multi-Patch Architecture takes much time.
- Lacks detail of image.
- Leaving block noise or ringing artifacts
Overview of our proposed method

- Single Scale Architecture
- Include Adversarial loss by using discriminator
- Using Discrete cosine transform for loss

\[
\mathcal{L}_{L1} = |x - G(y)| \\
\mathcal{L}_DCT = \left| \left| DCT(x) \right| - \left| DCT(G(y)) \right| \right| \\
\mathcal{L}_{adv}: Adversarial loss \\
\mathcal{L}_{cont}: Perceptual Loss
Overview of our proposed method

• Architecture

 - Simple Encoder Decoder
 - 7 Residual Block (ResBlock)
 - Parametric ReLU (PReLU) is adopted in order to prevent overfitting

• Train Dataset

 A part of GOPRO, DVD, NFS, HIDE Dataset are used for training.
Influence of DCT loss

Sharp

Non-linear Kernel

Trained without DCT loss

Trained with DCT loss
Subjective Result
Testing Dataset

DeblurGAN
DeblurGANv2
SRN
DeblurDCTGAN
Subjective Result

Real Image

DeblurGAN
DeblurGANv2
SRN
DeblurDCTGAN
Result of PSNR and SSIM

<table>
<thead>
<tr>
<th>Method</th>
<th>Processing Time</th>
<th>GOPRO</th>
<th>DVD</th>
<th>NFS</th>
<th>HIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PSNR</td>
<td>SSIM</td>
<td>PSNR</td>
<td>SSIM</td>
</tr>
<tr>
<td>Blurred</td>
<td></td>
<td>25.64</td>
<td>0.8580</td>
<td>26.97</td>
<td>0.8462</td>
</tr>
<tr>
<td>DeblurGAN</td>
<td>0.85 s</td>
<td>25.02</td>
<td>0.8493</td>
<td>25.31</td>
<td>0.8368</td>
</tr>
<tr>
<td>DeblurGANv2</td>
<td>0.35 s</td>
<td>28.00</td>
<td>0.9051</td>
<td>28.68</td>
<td>0.8871</td>
</tr>
<tr>
<td>SRN</td>
<td>1.87 s</td>
<td>30.25</td>
<td>0.9397</td>
<td>29.37</td>
<td>0.9110</td>
</tr>
<tr>
<td>DeblurDCTGAN</td>
<td>0.28 s</td>
<td>30.46</td>
<td>0.9428</td>
<td>30.15</td>
<td>0.9205</td>
</tr>
</tbody>
</table>
Conclusion

• DeblurDCTGAN can precisely remove blur.
 • By using GAN, details of the restored image can be retained.
 • DCT loss can reduce block noise or ringing artifacts.

• Relative to conventional methods, processing time of DeblurDCTGAN is reduced.