First- and Second-Order Sorted Local Binary Pattern Features for Grayscale-Inversion and Rotation Invariant Texture Classification

Tiecheng Song, Yuanjing Han, Jie Feng, Yuanlin Wang and Chenqiang Gao

Chongqing University of Posts and Telecommunications (CQUPT), China {songtc, gaocq}@cqupt.edu.cn; hanyuanjing56@163.com; {fengjie cqupt, wwangyuanlin}@foxmail.com

Texture classification challenges

• LBP is sensitive to inverse grayscale changes:

-foreground and background variations or varying lighting conditions

gradient-based methods
 complement code-based methods

 Q
 do not distinguish LBP codes and their complements

Proposed method

- First-Order Sorted LBP(SLBP) Feature
- > sort pairwise bins of a LBP histogram

- Second-Order Sorted LBP(SLBP) Feature
- capture the spatial co-occurrence relationships of LBP pairs
- > employ the sorting operator and max pooling

• Generalization to other LBP features

• First-Order SLBP Feature

$$H_{1}(SLBP_{r,P}^{riu2})[i] = \begin{cases} \max \left\{ H(LBP_{r,P}^{riu2})[i], H(LBP_{r,P}^{riu2})[P-i] \right\}, & 0 \le i < P/2 \\ \min \left\{ H(LBP_{r,P}^{riu2})[i], H(LBP_{r,P}^{riu2})[P-i] \right\}, & P/2 < i \le P \\ H(LBP_{r,P}^{riu2})[i], & i = P/2, P + 1 \end{cases} \end{cases}$$

robust to both change

Second-Order SLBP Feature

We cast grayscale inversion and image rotation as a row-column shifting problem regarding a LBP co-occurrence matrix.

Algorithm 1 Computation of second-order SLBP feature

- 1: Compute a $LBP_{r,P}^{riu2}$ feature map from the input image.
- 2: Construct a co-occurrence matrix $G(LBP_{r,P}^{riu2})$.
- 3: Obtain $G(SLBP_{r,P}^{riu2})$ by sorting pairwise columns of $G(LBP_{r,P}^{riu2})$ according to the sums of column elements.
- 4: Perform max pooling on each column of $G(SLBP_{r,P}^{riu2})$.
- 5: Output the second-order SLBP feature $H_2(SLBP_{r,P}^{riu2})$.

construct LBP co-occurrence histogram

Second-Order SLBP Feature

robustness to grayscale-inversion changes

Second-Order SLBP Feature

robustness to rotation changes

Generalization to other LBP features

we generalize our method to embed a complementary LBP magnitude feature into our framework.

Texture datasets

Outex (TC10): 24 classes, rotation changes Outex (TC12): 24 classes, rotation & illumination changes KTH-TIPS: 10 classes, illumination & scale changes Curet: 61 classes, viewpoints & illuminations changes

Nearest-neighborhood (NN) classifier with the chi-square distance

$$\chi^2(H_1, H_2) = \sum_k \frac{[H_1(k) - H_2(k)]^2}{H_1(k) + H_2(k)}$$

Descriptors	Linear grayscale-inversion changes				Nonlinear grayscale-inversion changes			
	r=1, P=8	r=2, P=16	r=3, P=24	three-scale	r=1, P=8	r=2, P=16	r=3, P=24	three-scale
LBP [1]	29.25	32.74	43.90	40.78	29.40	32.14	44.09	40.63
LTP [17]	13.20	17.35	21.88	21.39	14.24	29.51	43.67	36.56
CLBP [19]	20.76	23.96	24.35	24.43	18.13	22.45	24.15	22.99
LGP [30]	60.57	87.73	89.46	94.72	54.38	82.79	83.85	91.63
GLBP [31]	50.42	77.52	93.15	-	48.44	76.55	92.79	-
NRLBP [7]	38.63	75.36	86.61	89.66	38.52	74.87	86.15	89.48
CGRI-LBP [34]	85.43	96.90	98.02	98.15	73.26	94.58	96.80	96.41
$H_1(SLBP)$	38.13	80.51	91.38	90.41	38.07	79.90	91.28	89.84
$H_1(LBPM)$	81.74	93.67	95.52	97.06	68.52	87.86	91.51	93.23
$H_1(SLBP_LBPM)$	73.00	96.41	97.00	97.76	64.11	93.62	96.09	96.12
$H_2(SLBP)$	43.77	89.81	94.80	90.77	44.27	89.58	94.92	90.60
$H_2(LBPM)$	82.81	96.00	96.90	97.58	74.36	91.51	95.03	95.06
$H_2(SLBP_LBPM)$	78.96	96.85	98.06	98.28	70.91	95.42	96.29	96.72
SLGP [33]	97.79				96.41			
MRELBP [28]	17.06				16.30			
LETRIST [14]	32.97				4.17			
DRLBP [8]	20.83				6.33			
DRLTP [8]	23.09				4.17			

TABLE I CLASSIFICATION ACCURACIES (%) ON THE OUTEX-TC10 TEST SUITE

our second-order SLBP feature achieves the best performance under both conditions

TABLE II CLASSIFICATION ACCURACIES (%) ON THE OUTEX-TC12 TEST SUITE

Descriptors	I	inear grayscale-	inversion change	es	Nonlinear grayscale-inversion changes			
Descriptors	r=1, P=8	r=2, P=16	r=3, P=24	three-scale	r=1, P=8	r=2, P=16	r=3, P=24	three-scale
	t184 horizon	t184 horizon	t184 horizon	t184 horizon	t184 horizon	t184 horizon	t184 horizon	t184 horizon
LBP [1]	24.21 22.70	31.80 32.58	42.33 42.67	39.31 39.68	24.28 22.99	31.71 32.52	42.69 42.89	38.91 39.39
LTP [17]	22.34 24.63	25.28 27.80	32.45 33.49	37.38 38.45	12.92 15.25	29.56 30.44	42.78 41.47	35.54 37.08
CLBP [19]	17.75 17.86	22.50 22.36	23.10 23.31	22.11 22.80	17.15 17.18	22.64 23.01	23.62 23.80	23.14 23.87
LGP [30]	51.16 52.37	70.51 71.18	74.72 75.42	78.96 76.83	41.69 45.22	63.77 61.24	67.51 68.81	70.76 69.14
GLBP [31]	46.05 47.64	74.68 77.06	90.37 89.26	-	41.81 41.49	72.99 74.78	89.33 88.70	-
NRLBP [7]	32.57 29.42	64.88 55.46	70.42 63.89	73.09 66.80	31.92 29.35	64.65 55.64	70.51 64.05	73.01 66.50
CGRI-LBP [34]	63.50 62.83	83.09 82.31	87.76 82.99	85.16 82.99	59.31 62.26	72.82 71.46	80.63 76.18	77.99 75.56
$H_1(SLBP)$	29.26 25.46	70.55 64.00	78.58 72.91	79.44 74.44	29.26 25.25	70.28 63.40	78.08 72.57	79.00 73.84
$H_1(LBPM)$	59.31 62.78	73.80 72.41	81.18 78.66	81.11 81.18	51.06 51.18	64.63 61.41	74.31 66.48	72.80 71.39
$H_1(SLBP_LBPM)$	56.97 59.41	80.89 80.20	88.15 86.35	84.33 83.38	50.35 52.06	72.73 67.48	82.52 77.52	76.50 73.80
$H_2(SLBP)$	32.32 33.67	83.25 79.22	85.35 80.63	79.77 76.63	32.11 32.91	83.08 79.17	85.16 79.84	79.44 76.67
$H_2(LBPM)$	63.19 67.80	78.17 78.08	84.84 83.98	83.19 84.47	54.05 53.52	69.26 67.34	76.97 70.25	74.81 73.33
$H_2(SLBP_LBPM)$	58.29 61.19	86.89 87.05	90.22 89.66	85.44 85.30	49.31 52.08	76.34 75.02	84.03 80.74	78.56 78.13
SLGP [33]	84.17 83.82				75.49 73.63			
MRELBP [28]	25.02 24.68				16.30 25.14			
LETRIST [14]	32.37 34.89				4.17 4.17			
DRLBP [8]	21.41 23.84				6.13 6.75			
DRLTP [8]	24.39 27.48				4.35 4.33			

our SLBP feature runs faster than GLBP

Descriptors	Li	near grayscale-	inversion chan	ges	Nonlinear grayscale-inversion changes			
	r=1, P=8	r=2, P=16	r=3, P=24	three-scale	r=1, P=8	r=2, P=16	r=3, P=24	three-scale
LBP [1]	31.84	33.54	34.21	43.70	32.11	33.39	34.18	43.54
LTP [17]	16.62	18.49	18.53	44.77	11.64	17.12	22.13	41.67
CLBP [19]	29.63	31.60	32.81	33.70	31.65	33.50	34.28	43.68
LGP [30]	76.71	67.37	69.55	89.65	60.57	62.30	65.18	85.65
GLBP [31]	76.80	86.24	88.38	-	73.19	85.78	87.21	-
NRLBP [7]	36.24	63.90	74.38	74.96	36.00	65.79	74.52	75.15
CGRI-LBP [34]	83.76	91.21	93.00	94.84	81.54	89.78	91.96	93.42
$H_1(SLBP)$	35.70	67.06	80.33	77.29	35.72	66.38	80.00	76.73
$H_1(LBPM)$	74.99	82.98	86.48	91.61	68.16	76.33	81.15	87.73
$H_1(SLBP_LBPM)$	68.91	88.74	91.00	92.30	65.28	86.01	89.48	91.30
$H_2(SLBP)$	47.28	80.07	84.56	79.28	46.85	79.81	84.39	78.84
$H_2(LBPM)$	85.10	88.49	89.67	93.42	80.11	83.82	85.60	90.45
$H_2(SLBP_LBPM)$	78.77	91.46	92.85	94.34	76.53	90.02	91.45	93.09
SLGP [33]	94.86				91.20			
MRELBP [28]	38.39				38.85			
LETRIST [14]	43.68				2.30			
DRLBP [8]	41.83				11.29			
DRLTP [8]	55.56				4.64			

TABLE III CLASSIFICATION ACCURACIES (%) ON THE CURET DATABASE

we observe that H₁(SLBP) outperforms NRLBP when r > 1

Descriptors	Linear grayscale-inversion changes				Nonlinear grayscale-inversion changes			
	r=1, P=8	r=2, P=16	r=3, P=24	three-scale	r=1, P=8	r=2, P=16	r=3, P=24	three-scale
LBP [1]	39.25	39.74	45.91	47.17	38.99	38.14	44.59	46.65
LTP [17]	28.20	31.35	29.88	54.46	24.59	36.51	38.67	41.67
CLBP [19]	42.76	40.96	39.35	43.39	44.13	42.45	39.75	43.68
LGP [30]	78.57	79.73	80.04	88.12	76.12	75.38	75.59	87.71
GLBP [31]	83.42	88.52	88.54	-	81.84	87.55	88.78	-
NRLBP [7]	67.90	76.07	79.63	84.85	66.73	75.61	78.98	84.80
CGRI-LBP [34]	89.64	92.85	93.21	95.30	89.54	91.78	91.96	92.68
$H_1(SLBP)$	59.49	81.24	87.34	88.90	57.46	81.02	86.90	89.27
$H_1(LBPM)$	83.00	89.88	87.39	92.85	81.22	88.27	84.00	90.37
$H_1(SLBP_LBPM)$	83.59	90.66	91.73	94.27	80.98	89.76	90.73	91.95
$H_2(SLBP)$	79.66	86.93	89.17	91.20	78.54	86.86	88.41	90.93
$H_2(LBPM)$	89.00	92.76	90.54	94.02	86.34	90.59	87.74	92.15
$H_2(SLBP_LBPM)$	91.00	93.93	94.07	95.44	89.95	92.41	92.46	94.56
SLGP [33]	94.05				90.82			
MRELBP [28]	39.02				40.24			
LETRIST [14]	53.75				12.24			
DRLBP [8]	45.24				18.49			
DRLTP [8]	55.64				10.00			

TABLE IV CLASSIFICATION ACCURACIES (%) ON THE KTH-TIPS DATABASE

the multi-scale representation helps to improve the feature's descriptive ability

Summary

- We propose SLBP feature
- It can preserve the distribution information of LBP codes and their complements.
- Second-order SLBP feature captures the spatial co-occurrence relationships of LBP codes.
- It can be generalized to embed any rotation invariant LBP features, e.g., LBPM

Thanks!