A Transformer-based Radical Analysis Network for Chinese Character Recognition

Chen Yang, Qing Wang, Jun Du, Jianshu Zhang, Changjie Wu, Jiaming Wang

NEL-SLIP Lab, University of Science and Technology of China, Hefei, Anhui, P.R.China

Motivation

- Weakness of character-based methods
 - Don't consider the similarity and internal structures among different characters
 - Have difficulty in recognizing unseen Chinese characters

Hierarchical radical structure of an example Chinese character

Motivation

Existing solutions

- Radical-based methods decompose the Chinese character into a limited number of radicals
- Have ability to learn a zero-shot problem
- > Strengths of the Transformer architecture
 - Self-attention mechanism can capture long-range dependencies and the detailed internal pattern
 - The Transformer is composed of stacked blocks and aggregates the input context for each block, which naturally provides us with more hierarchical representations

Proposed Architecture

Transformer-based radical analysis network(RTN)

Dense Encoder

$$\mathbf{A} = \left\{\mathbf{a}_1, \dots, \mathbf{a}_L\right\}, \mathbf{a}_l \in \mathbb{R}^L$$

Transformer Decoder

$$\mathbf{s}_i^n = \mathsf{MA}(\mathbf{c}_i^{n-1}, \mathbf{C}_{< i}^{n-1}, \mathbf{C}_{< i}^{n-1})$$

$$\mathbf{z}_i^n = \mathsf{MA}(\mathbf{s}_i^n, \mathbf{A}, \mathbf{A})$$

$$\mathbf{c}_{i}^{n} = \max\left(0, \mathbf{W}_{1}^{n}\mathbf{z}_{i}^{n} + \mathbf{b}_{1}^{n}\right)\mathbf{W}_{2}^{n} + \mathbf{b}_{1}^{n}$$

Training Objective

$$\mathsf{P}(\mathbf{Y}|\mathbf{X}) = \prod_{i=1}^{|\mathbf{Y}|} \mathsf{P}(\mathbf{y}_i|\mathbf{Y}_{< i}, \mathbf{X}) = \prod_{i=1}^{|\mathbf{Y}|} \mathsf{P}(\mathbf{y}_i|\mathbf{c}_i^N)$$

Experiments

Experiments on printed Chinese characters

TABLE I COMPARISON OF ACCURACY RATE BEWTEEN RTN AND RAN WITH DIFFERENT CAPTION LENGTHS ON DIFFERENT FONT-STYLE UNSEEN CHINESE CHARACTERS RESPECTIVELY.

Font Style	RAN (%)			RTN (%)		
i one orgine	ALL	≤ 6	> 6	ALL	≤ 6	> 6
Song	92.21	93.65	90.78	94.54	94.93	94.16
FangSong	91.04	91.98	90.11	94.21	94.84	93.57
Hei	90.41	91.34	89.50	92.79	92.41	93.11
Kaiti	88.57	90.59	86.58	91.31	92.96	89.67

Fig. 2. Comparison of character-level accuracy between RTN and RAN with respect to the frequency of radicals. Approximately 100 radical categories are included in each range.

[1] Zhang, Jianshu, et al. "Radical analysis network for zero-shot learning in printed Chinese character recognition." 2018 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2018.

Experiments

Experiments on natural scene Chinese characters

TABLE II COMPARISON OF THE RECOGNITION PERFORMANCE OF RTN AND RAN WITH DIFFERENT CAPTION LENGTHS ON THE CTW VALID DATABASE

Model	Caption length			
	ALL	≤ 4	> 4	
RAN	85.95%	89.33%	82.31%	
RTN	87.51%	90.02%	84.80%	
Accuracy [↑]	1.56%	0.69%	2.49%	

TABLE III COMPARISON OF THE PERFORMANCE OF RAN AND RTN WITH THE DIFFERENT APPEARANCE FREQUENCY OF CHARACTER-LEVEL CATEGORIES.

Frequency Categories Samples	$\leq 20 \\ 398 \\ 1128$	$\leq 50 \\ 511 \\ 1229$	$\leq 100 \\ 335 \\ 1663$	HF 1044 48745	ALL 2015 52765
RAN	25.88%	47.92%	65.12%	89.01%	85.95%
RTN	41.84 %	61.51%	7 1.67 %	89.76%	87.51%

TABLE IV COMPARISON OF THE RECOGNITION PERFORMANCE OF RAN AND RTN WITH RESPECT TO 6 ATTRIBUTES ON THE CTW TEST DATASET; ALL INCLUDES ALL CHARACTERS ON THE TEST DATABASE.

Attributes	Training Samples	RAN(%)	RTN(%)
All	760107	85.56	87.31
occluded	101393	71.55	73.94
background	218560	82.84	84.57
distorted	192481	71.55	83.60
3D raised	199066	76.17	78.06
wordart	65983	87.11	84.25
handwritten	6661	63.58	66.70

Experiments

Attention visualization

Fig. 4. Attention visualization of recognizing a complicated Chinese character step by step; the above is the process of RAN and the below is the process of RTN; symbols below the images are the predicted radicals or structures.

Fig. 5. Comparison of RAN and RTN on aligning the internal spatial structures; the above is the partial process of RAN and the below is the partial process of RTN.

Future Work

Evaluate on zero-shot scene or handwritten character recognition

> Apply to Chinese text line recognition

Design more task-specific transformer-based decoder

Thank you!