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Introduction

Recently, many studies attempt to recognize actions in compressed videos
rather than regular ones, aiming to avoid the resource overhead of decoding.
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Structure comparison between compressed video action recognition and
traditional video action recognition.
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Popular methods

® EMV-CNN(2016)

e Optical flow branch is replaced by motion vector

® CoViAR (2018)

* Multi-Stream CNN

® DMC-Net (2019)

 Using GAN to generate more refined motion vectors
® TTP (2019)

 Temporal Trilinear Pooling strategy

® Others

* Image denoising techniques, etc.
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Overview of EMV-CNN

B. Zhang, L. Wang, Z. Wang, Y. Qiao, and H. Wang, “Real-time action recognition
with enhanced motion vector cnns,” in CVPR, 2016
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Motivation

® In the inference stage, the existing methods generally assume
that all the observations of samples are available.

® In practical transmission, the compressed video packets are
usually disorderly received and lost due to network jitters or
congestions.

® In this work, we concentrate on practical compressed video
action recognition, and consider to complement the missing
video packets with partial received ones.
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Compressed video action recognition in practical scenarios. Number 2, 3 packets are
lost during video transmission.
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Contribution

® We proposed a Temporal Enhanced Multi-Stream Network
(TEMSN) for practical compressed video action recognition.

® We use three modalities in compressed domain as
complementary cues to capture richer information from
compressed video packets.

® We design a temporal enhanced module based on Encoder-
Decoder structure to generate more complete action
dynamics.

® The proposed approach is evaluated on the HMDB-51 and
UCF-101 datasets and state-of-the-art results are reached.
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Methodology
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Methodology

Given limited compressed video packets, TEMSN takes three
phases to make action recognition.

® Multi-modal Encapsulation:
 We first decode the compressed video into I-frame (intra-

coded frame), P-frame (predictive frame).
* We exploit the relation between the I-frame and P-frame to

decouple the input, as Eg. 1 and Eq. 2, resulting residual,
motion vector, and intra-frame.
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Methodology

® Feature Extraction:
We then transform the modalities into the feature spaces by the
Multi-Stream Network which consists of three independent CNNs.

® Temporal Enhancement:

* The temporal enhanced module takes the packet features as
input, and predicts the contiguous packets as Eqg. 3.

 The original and synthesized features are concatenated to form
global representation for final recognition.
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Datasets

® HMDB-51: contains 6,766 trimmed videos from 51 action categories
and provides 3 training/testing splits. Each training/test split has 3,570
training clips and 1,530 testing clips.

® UCF-101: contains 13,320 trimmed videos from 101 action categories.
3 training/testing splits are offered, each of which has approximately
9,600 clips for training and 3,700 clips for testing.
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Example video class in HMDB-51




Train

® Gradient descent: ADAM

® Hidden units: 2048 for I-frame and 512 for motion vector
and residual

® |nitial learning rate: 1e-4 for |I-frame and 3e-4 for motion
vector and residual

® Loss: cross-entropy loss for feature extraction network

and L2 loss for Temporal Enhanced module
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Results

Table 1 accuracy averaged over three splits on HMDB-51 and UCF-101 for state-of-
the-art compressed video-based methods

Methods HMDB-51 UCF-101 Ratio
EMV-CNN [10] 51.2 86.4 100%
DTMV-CNN [11] 55.3 87.5 100%
TTP [16] 58.2 87.2 100%
CoViAR [28] 59.1 9204 100%
CoViAR? 594 90.7 100%
CoViAR? 57.3 88.5 50%
TEMSN (ours) 611 91.8 100%
TEMSN (ours) 59.1 90.3 50%

The proposed TEMSN shows superior performance compared to CoViAR and state-
of-the-art, indicating the ability in dealing with practical conditions.

Table 2 results of three video packet prediction schemes on HMDB-51

Baselines Random Uniform  Normal

w/o Pre. 57.3 57.3 57.3
+Pre. (20%) 57.8 58.2 58.0
+Pre. (50%) 58.7 59.1 58.9
+Pre. (100%) 61.1 61.1 6l.1

Longer temporal dynamics lead to better results and predicting all of the lost

packets achieves the best performance.



Results
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Qualitative results of the proposed TEMSN on HMDB51, where each row belongs to an
action. Frames in the blue box indicate the received ones, and in the red box indicate the
lost ones.
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Conclusions

® This paper presents a Temporal Enhanced Multi-Stream
Network towards practical compressed video action
recognition.

® To obtain rich features from the compressed domain, we
make use of three modalities to build a multi-stream
network for action modeling.

® We further design a temporal enhanced module which is
inserted into each stream to capture more complete
motion dynamics.

® The experiments are conducted on the HMDB51 and
UCF101 databases, and the results show the effectiveness
of our proposed approach.
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