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Introduction 2

Feature Point Matching

Applications

• Image stitching

• 3D reconstruction

• Camera calibration

• etc.

Deep learning-based approaches have been proposed as local descriptors

• HardNet [Mishchuk, NeurIPS17]

• AffNet [Mishkin, ECCV18]

• D2Net [Dusmanu, CVPR19] feature vector: 𝒇



Introduction 3

Feature Point Matching in Cross-Spectral Images

E.g., between RGB and Near-Infrared (NIR) images

Not easy to obtain ground-truth correspondences

We propose a self-supervised learning method to train feature extraction networks

by utilizing the cycle consistency of the corresponding points.
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Soft nearest neighbor [Dwibedi, CVPR19]
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Stereo matching on KITTI 2012 dataset

• 390 image pairs for training

• 194 image pairs for testing

Simulated three types of cross-spectral settings

• RGB stereo

• RGB2gray

• anaglyph

Compared methods

• Hand-crafted cost function + nearest-neighbor matching:

➢ Baseline

• Hand-crafted cost function + smoothness regularization (guided filter) + post-processing:

➢ Cost-volume filtering (CVF) [Hosni, TPAMI12]

RGB stereo

RGB2gray

anaglyph
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Error rate [%] ↓ Mean error [pix] ↓

RGB stereo RGB2gray anaglyph RGB stereo RGB2gray anaglyph

Ours 39.0 35.4 27.6 5.29 4.93 4.20

Baseline 52.8 49.9 57.9 7.31 6.92 8.20

CVF [Hosni, TPAMI12] 43.9 43.7 34.0 5.65 5.59 4.71
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Conclusions

• General feature point matching including cross-spectral settings

• Proposed method:
– Self-supervised method with cycle consistency learning

• Experimental results on cross-spectral stereo matching:
– Better accuracy than hand-crafted methods on KITTI dataset

– Not as accurate as the compared methods but much faster on PittsStereo dataset

• Future works:
– Deal with occlusions for better accuracy

– Apply to other feature point matching problems such as image stitching and 
optical flow estimation
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