

Group-wise Feature Orthogonalization and Suppression for GAN based Facial Attribute Translation

Zhiwei Wen, Haoqian Wu, Weicheng and Linlin Shen

Computer Vision Institute, Shenzhen University

Outline

- 1. Background
- 2. Methods
- 3. Experimental Results
- 4. Conclusions

Background

- Attribute entanglement
 - Poor generalization ability

Motivation

- Excavate semantic attributes
- Outlier feature maps

(a) Input

(b) Face

(c) Hair

(d) Background

(e) Input

(f) Outlier FM

(g) Without FM Sup.

(h) Normal FM

(i) With FM Sup.

- 1. Group-wise feature orthogonality
- 2. Intersection feature suppression
- 3. Constrained by the two methods

The framework of the proposed methods

- Feature Map Encoding and Clustering
 - the runtime costs largely reduced
 - excavate semantic attributes

Group-wise Feature Orthogonality and Suppression

(1)
$$\mathcal{L}_{GO} = \frac{2}{m(m-1)} \sum_{i} \sum_{j} g_{i}^{T} g_{j},$$

(2)
$$d_{i} = ||f_{i} - \frac{1}{N^{(r)}} \sum_{j} f_{j}||_{2} \sim \mathcal{N}(0, \frac{\gamma}{\sqrt{2n}N^{(r)}})$$

(3)
$$d_{i} > \kappa \frac{\gamma}{\sqrt{2n}N^{(r)}}$$

Network loss function

$$\begin{cases} \mathcal{L}_{drop} = E_{x,c'}[||G(x,c') - G_{drop}(x,c')||_{1}], \\ \mathcal{L}_{rec} = E_{x,c,c'}[||x - G_{drop}(G(x,c'),c)||_{1}], \\ \mathcal{L}_{G} = \mathcal{L}_{OriG} + \lambda_{drop}\mathcal{L}_{drop} + \lambda_{rec}\mathcal{L}_{rec} + \lambda_{GO}\mathcal{L}_{GO}, \\ \mathcal{L}_{D} = \mathcal{L}_{OriD}. \end{cases}$$

Experiment

- Baselines and Dataset
 - StarGAN^[1], AttGAN^[2]

[1] Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In: CVPR (2018).

[2] Zhenliang He, et al.: Attgan: Facial attribute editing by only changing what you want. In: TIP (2019).

Experiment

- Hash Encoding
 - Does not cause Information degradation
 - The runtime costs largely reduced

Based on StarGAN+GO+IFS for RaFD

- GO(Group-wise orthogonality), IFS(Intersection feature suppression)

Method	Accuracy ↑	IS ↑	FID \downarrow	$RT\downarrow$
Hash encoding	98.41%	2.770	43.51	0.102
PCA	98.21%	2.769	44.71	0.261
Direct vectorization	98.81 %	2.759	46.92	1.289

 \uparrow means larger numbers are preferred, \downarrow means opposite.

• Two orthogonality strategies

(a) Input

(b) StarGAN

(c) Feature mapwise orthogonality

(d) Group-wise orthogonality

• Intersection feature suppression

(a)Input (b)StarGAN (c)Offline (d)Online

- Ablation study
 - IFS (intersection feature suppression)
 - GO (group-wise orthogonality)

• Hair color translation

• Comparison with StarGAN and AttGAN

Quantitative Results

• CelebA and RaFD

Meas.	Method	Black	Blond	Brown	Gender	Age
Acc. ↑	StarGAN	66.77	78.98	55.96	60.06	63.46
	Ours	78.08	71.37	63.76	63.06	63.36
	AttGAN	50.55	31.23	34.33	63.96	58.16
	Ours	55.16	42.14	36.04	65.97	69.37
IS ↑	StarGAN	1.178	1.182	1.014	1.200	1.122
	Ours	1.204	1.237	1.033	1.221	1.127
	AttGAN	1.317	1.329	1.131	1.310	1.111
	Ours	1.331	1.344	1.157	1.325	1.121
FID ↓	StarGAN	65.90	93.06	71.28	105.06	85.58
	Ours	58.86	79.92	64.86	101.73	76.68
	AttGAN	62.29	84.94	66.41	101.03	82.56
	Ours	56.63	82.51	60.97	98.78	78.06

 \uparrow means larger numbers are preferred, \downarrow means opposite.

Method	Accuracy ↑	IS ↑	$FID \downarrow$
StarGAN	97.62%	2.516	46.59
StarGAN+IFS	97.02%	2.673	46.53
StarGAN+GO	97.62%	2.617	44.56
StarGAN+IFS+GO	98.41%	2.770	43.51
AttGAN	65.48%	2.785	60.39
AttGAN+IFS	69.84%	2.803	51.02
AttGAN+GO	70.63%	2.827	50.01
AttGAN+IFS+GO	73.02%	2.918	53.24

 \uparrow means larger numbers are preferred, \downarrow means opposite.

Generalization Performances

• Visual and quantitative results

CelebA and RaFD are used for training and testing

StarGAN

Blond Hair

Hair

Brown Hair

Gender

Age

Metric	Method	Black	Blond	Brown	Gender	Age
Acc. ↑	StarGAN	53.75	62.50	57.29	70.63	66.67
	Ours	80.42	50.63	60.63	74.79	77.50
	AttGAN	56.46	15.83	43.33	41.04	50.42
	Ours	59.17	11.46	49.58	44.38	74.38
IS ↑	StarGAN	1.192	1.083	1.003	1.126	1.067
	Ours	1.211	1.087	1.024	1.176	1.078
	AttGAN	1.238	1.050	1.180	1.028	1.069
	Ours	1.276	1.052	1.183	1.050	1.082
FID ↓	StarGAN	138.74	169.35	150.26	176.01	188.59
	Ours	136.85	163.49	142.78	161.10	172.46
	AttGAN	138.97	191.56	152.34	184.23	171.03
	Ours	139.43	184.73	154.79	170.23	156.69

 \uparrow means larger numbers are preferred, \downarrow means opposite.

Conclusions

- 1. group-wise orthogonalization and intersection feature suppression.
- 2. semantic attribute disentanglement improve network generalization ability.
- 3. synthesize much more genuine images and significantly less abnormality.