Group-wise Feature Orthogonalization and Suppression for GAN based Facial Attribute Translation

Zhiwei Wen, Haoqian Wu, Weicheng and Linlin Shen
Computer Vision Institute, Shenzhen University

Outline

1. Background
2. Methods
3. Experimental Results
4. Conclusions

Background

- Attribute entanglement
- Poor generalization ability

Motivation

- Excavate semantic attributes
- Outlier feature maps

(a) Input

(b) Face

(c) Hair

(d) Background

(e) Input

(f) Outlier FM
(g) Without FM Sup.

(h) Normal FM
(i) With FM Sup.

Methods

1. Group-wise feature orthogonality
2. Intersection feature suppression
3. Constrained by the two methods

Methods

The framework of the proposed methods

Methods

- Feature Map Encoding and Clustering

- the runtime costs largely reduced
- excavate semantic attributes

Methods

Group-wise Feature Orthogonality and Suppression

(1) $\quad \mathcal{L}_{G O}=\frac{2}{m(m-1)} \Sigma_{i} \Sigma_{j} g_{i}^{T} g_{j}$:
(2) $\quad d_{i}=\left\|f_{i}-\frac{1}{N^{(r)}} \sum_{j} f_{j}\right\|_{2} \sim \mathcal{N}\left(0, \frac{\gamma}{\sqrt{2 n} N^{(r)}}\right)$

Methods

Network loss function

$$
\left\{\begin{array}{l}
\mathcal{L}_{\text {drop }}=E_{x, c^{\prime}}\left[\left\|G\left(x, c^{\prime}\right)-G_{\text {drop }}\left(x, c^{\prime}\right)\right\|_{1}\right] \\
\mathcal{L}_{\text {rec }}=E_{x, c, c^{\prime}}\left[\left\|x-G_{\text {drop }}\left(G\left(x, c^{\prime}\right), c\right)\right\|_{1}\right] \\
\mathcal{L}_{G}=\mathcal{L}_{O r i G}+\lambda_{\text {drop }} \mathcal{L}_{\text {drop }}+\lambda_{\text {rec }} \mathcal{L}_{r e c}+\lambda_{G O} \mathcal{L}_{G O} \\
\mathcal{L}_{D}=\mathcal{L}_{O r i D}
\end{array}\right.
$$

Experiment

- Baselines and Dataset
- StarGAN ${ }^{[1]}$, AttGAN ${ }^{[2]}$

[1] Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In: CVPR (2018).
[2] Zhenliang He, et al.: Attgan: Facial attribute editing by only changing what you want. In: TIP (2019).

Experiment

- Hash Encoding
- Does not cause Information degradation
- The runtime costs largely reduced

Based on StarGAN+GO+IFS for RaFD

- GO(Group-wise orthogonality), IFS(Intersection feature suppression)

Method	Accuracy \uparrow	IS \uparrow	FID \downarrow	RT \downarrow
Hash encoding	98.41%	$\mathbf{2 . 7 7 0}$	$\mathbf{4 3 . 5 1}$	$\mathbf{0 . 1 0 2}$
PCA	98.21%	2.769	44.71	0.261
Direct vectorization	$\mathbf{9 8 . 8 1 \%}$	2.759	46.92	1.289

\uparrow means larger numbers are preferred, \downarrow means opposite.

Visual Results

- Two orthogonality strategies

(a) Input
(b) StarGAN
(c) Feature map-
(d) Group-wise wise orthogonality orthogonality
- Intersection feature suppression

Visual Results

- Ablation study
- IFS (intersection feature suppression)
- GO (group-wise orthogonality)

Visual Results

- Hair color translation

Visual Results

- Comparison with StarGAN and AttGAN

Quantitative Results

- CelebA and RaFD

Meas.	Method	Black	Blond	Brown	Gender	Age
Acc. \uparrow	StarGAN	66.77	$\mathbf{7 8 . 9 8}$	55.96	60.06	$\mathbf{6 3 . 4 6}$
	Ours	$\mathbf{7 8 . 0 8}$	71.37	$\mathbf{6 3 . 7 6}$	$\mathbf{6 3 . 0 6}$	63.36
	AttGAN	50.55	31.23	34.33	63.96	58.16
	Ours	$\mathbf{5 5 . 1 6}$	$\mathbf{4 2 . 1 4}$	$\mathbf{3 6 . 0 4}$	$\mathbf{6 5 . 9 7}$	$\mathbf{6 9 . 3 7}$
IS \uparrow	StarGAN	1.178	1.182	1.014	1.200	1.122
	Ours	$\mathbf{1 . 2 0 4}$	$\mathbf{1 . 2 3 7}$	$\mathbf{1 . 0 3 3}$	$\mathbf{1 . 2 2 1}$	$\mathbf{1 . 1 2 7}$
	AttGAN	1.317	1.329	1.131	1.310	1.111
	Ours	$\mathbf{1 . 3 3 1}$	$\mathbf{1 . 3 4 4}$	$\mathbf{1 . 1 5 7}$	$\mathbf{1 . 3 2 5}$	$\mathbf{1 . 1 2 1}$
FID \downarrow	StarGAN	65.90	93.06	71.28	105.06	85.58
	Ours	$\mathbf{5 8 . 8 6}$	$\mathbf{7 9 . 9 2}$	$\mathbf{6 4 . 8 6}$	$\mathbf{1 0 1 . 7 3}$	$\mathbf{7 6 . 6 8}$
	AttGAN	62.29	84.94	66.41	101.03	82.56
	Ours	$\mathbf{5 6 . 6 3}$	$\mathbf{8 2 . 5 1}$	$\mathbf{6 0 . 9 7}$	$\mathbf{9 8 . 7 8}$	$\mathbf{7 8 . 0 6}$

\uparrow means larger numbers are preferred, \downarrow means opposite.

Method	Accuracy \uparrow	IS \uparrow	FID \downarrow
StarGAN	97.62%	2.516	46.59
Star $G A N+I F S$	97.02%	2.673	46.53
StarGAN+GO	97.62%	2.617	44.56
Star $G A N+I F S+G O$	$\mathbf{9 8 . 4 1 \%}$	$\mathbf{2 . 7 7 0}$	$\mathbf{4 3 . 5 1}$
AttGAN	65.48%	2.785	60.39
AttGAN+IFS	69.84%	2.803	51.02
AttGAN+GO	70.63%	2.827	$\mathbf{5 0 . 0 1}$
AttGAN $+I F S+G O$	$\mathbf{7 3 . 0 2 \%}$	$\mathbf{2 . 9 1 8}$	53.24

\uparrow means larger numbers are preferred, \downarrow means opposite.

Generalization Performances

- Visual and quantitative results

CelebA and RaFD are used for training and testing

Input

Blond
Hair

Brown Hair

Gender
Age

Metric	Method	Black	Blond	Brown	Gender	Age
Acc. \uparrow	StarGAN	53.75	$\mathbf{6 2 . 5 0}$	57.29	70.63	66.67
	Ours	$\mathbf{8 0 . 4 2}$	50.63	$\mathbf{6 0 . 6 3}$	$\mathbf{7 4 . 7 9}$	$\mathbf{7 7 . 5 0}$
	AttGAN	56.46	$\mathbf{1 5 . 8 3}$	43.33	41.04	50.42
	Ours	$\mathbf{5 9 . 1 7}$	11.46	$\mathbf{4 9 . 5 8}$	$\mathbf{4 4 . 3 8}$	$\mathbf{7 4 . 3 8}$
IS \uparrow	StarGAN	1.192	1.083	1.003	1.126	1.067
	Ours	$\mathbf{1 . 2 1 1}$	$\mathbf{1 . 0 8 7}$	$\mathbf{1 . 0 2 4}$	$\mathbf{1 . 1 7 6}$	$\mathbf{1 . 0 7 8}$
	AttGAN	1.238	1.050	1.180	1.028	1.069
	Ours	$\mathbf{1 . 2 7 6}$	$\mathbf{1 . 0 5 2}$	$\mathbf{1 . 1 8 3}$	$\mathbf{1 . 0 5 0}$	$\mathbf{1 . 0 8 2}$
FID \downarrow	StarGAN	138.74	169.35	150.26	176.01	188.59
	Ours	$\mathbf{1 3 6 6 . 8 5}$	$\mathbf{1 6 3 . 4 9}$	$\mathbf{1 4 2 . 7 8}$	$\mathbf{1 6 1 . 1 0}$	$\mathbf{1 7 2 . 4 6}$
	AttGAN	$\mathbf{1 3 8 . 9 7}$	191.56	$\mathbf{1 5 2 . 3 4}$	184.23	171.03
	Ours	139.43	$\mathbf{1 8 4 . 7 3}$	154.79	$\mathbf{1 7 0 . 2 3}$	$\mathbf{1 5 6 . 6 9}$

\uparrow means larger numbers are preferred, \downarrow means opposite.

Conclusions

1. group-wise orthogonalization and intersection feature suppression.
2. semantic attribute disentanglement improve network generalization ability.
3. synthesize much more genuine images and significantly less abnormality.
