Tiny Object Detection in Aerial Images

Jinwang Wang Wen Yang Haowen Guo Ruixiang Zhang Gui-Song Xia

Wuhan University, Wuhan, China

jwwangchn@whu.edu.cn

ICPR2021, Italy, January 2021

2021/01/13

Introduction	AI-TOD	M-CenterNet	Experiments	Reference
•000	00000	000	000	00

What is object detection?

Object detection seeks to locate objects from predefined categories with bounding boxes in an image.

Introduction	AI-TOD	M-CenterNet	Experiments	Reference
0000	00000	000	000	00

What is tiny object detection in aerial images?

Tiny object is defined as object whose area ratio is less than 0.12% by SPIE. In a typical aerial image with two meters space resolution, ordinary objects like vehicles are usually smaller than 8 pixels.

Introduction	AI-TOD	M-CenterNet	Experiments	Reference
0000	00000	000	000	
Challenge				

There are 67.8% and 79.0% of objects larger than 16 pixels in existing large-scale datasets DOTA and DIOR, respectively. They are not suitable for applications like tiny object detection.

Introduction	AI-TOD	M-CenterNet	Experiments	Reference
0000	00000	000	000	
AI-TOD				

A new dataset AI-TOD is proposed to handle the scale problem in DOTA and DIOR in this paper. The largest object in AI-TOD is smaller than 64 pixels, 86% of objects in AI-TOD are smaller than 16 pixels, and the mean size of objects in AI-TOD is 12.8 pixels.

Introduction	AI-TOD	M-CenterNet	Experiments	Reference
0000	●0000	000	000	00

We build the AI-TOD based on the publicly available large-scale aerial image datasets: DOTA-v1.5, xView, VisDrone2018-Det, Airbus Ship and DIOR. We extract images and object instances from the above datasets as follows:

Introduction	AI-TOD	M-CenterNet	Experiments	Reference
0000	●0000	000	000	00

We build the AI-TOD based on the publicly available large-scale aerial image datasets: DOTA-v1.5, xView, VisDrone2018-Det, Airbus Ship and DIOR. We extract images and object instances from the above datasets as follows:

(1) Image size. Original images are divided into 800×800 patches with an overlap of 200 pixels.

Introduction	AI-TOD	M-CenterNet	Experiments	Reference
0000	●0000	000	000	00

We build the AI-TOD based on the publicly available large-scale aerial image datasets: DOTA-v1.5, xView, VisDrone2018-Det, Airbus Ship and DIOR. We extract images and object instances from the above datasets as follows:

(1) Image size. Original images are divided into 800×800 patches with an overlap of 200 pixels.

(2) Object type. Eight categories *airplane* (AI), *bridge* (BR), *storage-tank* (ST), *ship* (SH), *swimming-pool* (SP), *vehicle* (VE), *person* (PE), *wind-mill* (WM) are chosen.

Introduction	AI-TOD	M-CenterNet	Experiments	Reference
0000	●0000	000	000	00

We build the AI-TOD based on the publicly available large-scale aerial image datasets: DOTA-v1.5, xView, VisDrone2018-Det, Airbus Ship and DIOR. We extract images and object instances from the above datasets as follows:

(1) Image size. Original images are divided into 800×800 patches with an overlap of 200 pixels.

(2) Object type. Eight categories airplane (AI), bridge (BR), storage-tank (ST), ship (SH), swimming-pool (SP), vehicle (VE), person (PE), wind-mill (WM) are chosen.
(3) Category conversion. Old categories in the corresponding dataset will be converted to new categories.

Introduction	AI-TOD	M-CenterNet	Experiments	Reference
0000	●0000	000	000	00

We build the AI-TOD based on the publicly available large-scale aerial image datasets: DOTA-v1.5, xView, VisDrone2018-Det, Airbus Ship and DIOR. We extract images and object instances from the above datasets as follows:

- (1) Image size. Original images are divided into 800×800 patches with an overlap of 200 pixels.
- (2) Object type. Eight categories *airplane* (*AI*), *bridge* (*BR*), *storage-tank* (*ST*), *ship* (*SH*), *swimming-pool* (*SP*), *vehicle* (*VE*), *person* (*PE*), *wind-mill* (*WM*) are chosen.
- (3) Category conversion. Old categories in the corresponding dataset will be converted to new categories.

(4) **Image selection.** The images are chosen by the proportion of tiny objects and the number of large objects in the images.

Introduction	AI-TOD	M-CenterNet	Experiments	Reference
0000	●0000	000	000	00

(1) Image size. Original images are divided into 800×800 patches with an overlap of 200 pixels.

(2) Object type. Eight categories *airplane* (*AI*), *bridge* (*BR*), *storage-tank* (*ST*), *ship* (*SH*), *swimming-pool* (*SP*), *vehicle* (*VE*), *person* (*PE*), *wind-mill* (*WM*) are chosen.

(3) Category conversion. Old categories in the corresponding dataset will be converted to new categories.

(4) **Image selection.** The images are chosen by the proportion of tiny objects and the number of large objects in the images.

After the above processing, we obtain the final tiny object detection dataset AI-TOD, which comes with 700, 621 object instances for eight categories across 28, 036 aerial images with sizes of 800×800 pixels.

Introduction	AI-TOD	M-CenterNet	Experiments	Reference
0000	00000	000	000	00

Dataset statistics

Number of objects per image set and per class.

AI-TOD	Train	Validation	Trainval	Test
airplane (AI)	623	170	793	745
bridge (BR)	512	140	652	689
storage-tank (ST)	5,269	2,477	7,746	5,860
ship (SH)	13,539	3,791	17,330	17,633
swimming-pool (SP)	293	34	327	292
vehicle (VE)	248,042	59,904	307,946	306,665
person (PE)	14,126	3,841	17,967	15,443
wind-mill (WM)	176	67	243	290
Total	282,580	70,424	353,004	347,617

Introduction	AI-TOD	M-CenterNet	Experiments	Reference
0000	0000	000	000	00

Dataset statistics

Mean and standard deviation of object scale on different datasets.

Dataset	Absolute size (pixels)	Relative size (pixels)
PASCAL VOC 07++12	156.6±111.2	0.372±0.265
MS COCO trainval	99.5±107.5	$0.190 {\pm} 0.203$
xView	34.9±39.9	0.011±0.013
DOTA-v1.0 trainval	$55.3{\pm}63.1$	$0.028 {\pm} 0.034$
DOTA-v1.5 trainval	34.0±47.8	$0.016{\pm}0.026$
VisDrone	$35.8 {\pm} 32.8$	$0.030 {\pm} 0.026$
Airbus-Ship	44.9±44.1	$0.058{\pm}0.057$
DIOR	65.7±91.8	$0.082{\pm}0.115$
AI-TOD	12.8±5.9	0.016±0.007

Tiny Object Detection in Aerial Images

Introduction	AI-TOD	M-CenterNet	Experiments	Reference
0000	00000	000	000	00

Dataset statistics

(a) Histogram of the number of instances per class.

(b) Histogram of number of instances per image.

(c) Histogram of number of instances' sizes.

(d) Boxplot depicting the range of sizes for each object category.

Tiny Object Detection in Aerial Images

Introduction	AI-TOD	M-CenterNet	Experiments	Reference
0000	00000	000	000	00

Samples

Introduction	AI-TOD	M-CenterNet	Experiments	Reference
0000	00000	•00	000	00

Sensitivity analysis of IOU

To ensure performance, detectors need to predict high-quality bounding boxes which have high Intersection over Unions (IoUs) with ground truths. However, IoU is very sensitive to tiny objects. Thus, localization ability is important for tiny object detector.

Introduction	AI-TOD	M-CenterNet	Experiments	Reference
0000	00000	000	000	00

Revisit of CenterNet

CenterNet locates the object by predicting the object center, offset and object size. For obtain high IoU on tiny object, object center and offset are most important.

keypoint heatmap [C] local offset [2] object size [2]

Introduction	AI-TOD	M-CenterNet	Experiments	Reference
0000	00000	000	000	00

M-CenterNet

Original CenterNet just uses one center point to predict object center and offset.

$$C_{\rm gt} = (\lfloor cx/s \rfloor, \lfloor cy/s \rfloor)$$

$$O_{\rm gt} = (\lfloor cx/s \rfloor, \lfloor cy/s \rfloor)$$

Introduction	AI-TOD	M-CenterNet	Experiments	Reference
0000	00000	00●	000	00

M-CenterNet

Our proposed Multiple Center Points based Learning Network (M-CenterNet) uses multiple center points to predict object center and offset.

$$\begin{split} C^1_{\rm gt} &= (\lfloor cx/s \rfloor, \lfloor cy/s \rfloor), \\ C^2_{\rm gt} &= (\lceil cx/s \rceil, \lfloor cy/s \rfloor), \\ C^3_{\rm gt} &= (\lfloor cx/s \rfloor, \lceil cy/s \rceil), \\ C^4_{\rm gt} &= (\lceil cx/s \rceil, \lceil cy/s \rceil) \end{split}$$

$$\begin{split} O_{\rm gt}^1 &= (\lfloor cx/s \rfloor, \lfloor cy/s \rfloor), \\ O_{\rm gt}^2 &= (\lceil cx/s \rceil, \lfloor cy/s \rfloor), \\ O_{\rm gt}^3 &= (\lfloor cx/s \rfloor, \lceil cy/s \rceil), \\ O_{\rm gt}^4 &= (\lceil cx/s \rceil, \lceil cy/s \rceil) \end{split}$$

12/17

Introduction	AI-TOD	M-CenterNet	Experiments	Reference
0000	00000	000	000	00

Performance of twelve detectors on AI-TOD.

Method	Backbone	AP	$AP_{0.5}$	$AP_{0.75}$	AP_{vt}	AP_{t}	AP_{s}	AP_{m}	oLRP	$oLRP_{\rm IoU}$	$oLRP_{\mathrm{FP}}$	$oLRP_{\mathrm{FN}}$
anchor-based two-stage:												
TridentNet	ResNet-50	7.5	20.9	3.6	1.0	5.8	12.6	14.0	92.7	33.3	60.0	72.6
Faster R-CNN	ResNet-50-FPN	11.4	27.0	8.0	0.0	8.3	23.1	24.5	89.5	29.9	49.2	71.1
Cascade R-CNN	ResNet-50-FPN	<u>13.8</u>	30.8	10.5	0.0	10.6	25.5	26.6	87.6	27.2	45.1	68.6
anchor-based one-stage:												
YOLOv3	DarkNet-53	4.5	14.2	1.7	2.1	4.6	5.9	6.2	94.3	33.7	44.8	80.4
RetinaNet	ResNet-50-FPN	4.7	13.6	2.1	2.0	5.4	6.3	7.6	94.7	33.0	74.4	78.2
SSD-512	VGG-16	7.0	21.7	2.8	1.0	4.7	11.5	13.5	92.8	33.5	60.4	71.1
anchor-free center-based:												
FoveaBox	ResNet-50-FPN	8.1	19.8	5.1	0.9	5.8	13.4	15.9	92.6	27.2	57.9	79.4
FCOS	ResNet-50-FPN	9.8	24.1	5.9	1.4	8.0	15.1	17.4	90.8	29.6	56.4	73.4
anchor-free												
keypoint-based:												
RepPoints	ResNet-50-FPN	9.2	23.6	5.3	2.5	9.2	12.9	14.4	91.5	29.5	58.2	75.0
Grid R-CNN	ResNet-50-FPN	12.2	27.7	9.0	0.2	10.3	22.6	23.3	88.6	28.3	48.8	70.6
CenterNet	DLA-34	13.4	39.2	5.0	3.8	12.1	17.7	18.9	87.1	32.7	41.8	56.9
M-CenterNet	DLA-34	14.5	40.7	6.4	6.1	15.0	19.4	20.4	85.8	31.5	39.3	54.8

Jinwang Wang (Wuhan University)

13/17

Introduction	AI-TOD	M-CenterNet	Experiments	Reference
0000	00000	000	000	00

Class-wise object detection results on AI-TOD.

Method	AI	BR	ST	SH	SP	VE	PE	WM
anchor-based two-stage: TridentNet Faster R-CNN Cascade R-CNN	9.67/89.84 <u>22.71/80.73</u> 25.57/77.62	0.77/98.56 3.87/96.23 7.47/92.87	12.28/88.00 20.18/81.47 23.33/79.07	17.11/85.00 19.02/83.19 23.55/79.69	3.20/97.00 <u>8.90/91.50</u> 10.81/89.75	11.87/88.66 11.88/88.63 14.09/86.80	3.98/95.80 4.49/95.12 5.34/94.55	0.94/98.38 0.32/99.08 0.00/100.00
anchor-based one-stage: YOLOv3 RetinaNet SSD-512	7.14/91.48 0.01/99.88 14.52/86.49	2.60/96.72 6.62/93.51 3.13/96.24	3.66/95.63 1.84/96.34 10.89/89.40	10.69/86.49 20.87/79.40 13.05/87.95	0.61/99.26 0.06/99.82 1.92/96.67	8.50/89.61 5.67/92.41 7.84/91.22	2.13/96.15 1.75/97.04 3.12/96.53	0.40/98.80 0.53/99.17 1.48/97.61
anchor-free center-based: FoveaBox FCOS	13.75/87.26 14.30/86.46	0.00/100.00 4.75/94.83	18.51/83.81 19.77/82.89	17.70/84.88 22.24/80.97	0.03/99.64 0.65/98.29	11.42/89.34 12.51/88.10	3.38/96.19 3.98/95.62	0.00/100.00 0.17/99.57
anchor-free keypoint-based: RepPoints Grid R-CNN CenterNet M-CenterNet	2.92/96.18 22.55/78.59 17.43/84.27 18.59/83.00	2.34/97.32 8.59/91.46 <u>9.46/90.61</u> 10.58/89.23	21.37/80.92 18.93/82.74 25.93/75.46 27.55/74.50	26.40/77.23 21.99/81.21 21.86/80.97 22.27/79.47	0.00/100.00 7.28/92.72 6.21/93.42 7.53/92.06	15.16/85.90 12.94/87.68 <u>16.54/82.32</u> 18.60/81.19	5.39/94.53 4.81/94.99 <u>8.12/91.82</u> 9.17/90.49	0.00/100.00 0.35/99.28 <u>1.94/97.73</u> 2.03/96.73

Jinwang Wang (Wuhan University)

Tiny Object Detection in Aerial Images

Introduction	AI-TOD	M-CenterNet	Experiments	Reference
0000	00000	000	000	00

Get AI-TOD Dataset

AI-TOD dataset can be downloaded on the GitHub and Google Drive.

GitHub https://github.com/jwwangchn/AI-TOD Google Drive https://drive.google.com/drive/folders/ 1mokzFtLCjygalSEajYTUmyzXvOHAa4WX?usp=sharing

15/17

Introduction	AI-TOD	M-CenterNet	Experiments	Reference
0000	00000	000	000	•0

References

G.-S. Xia, X. Bai, et al. DOTA: A large-scale dataset for object detection in aerial images

CVPR, 2018

K. Li, G. Wan, et al.

Object detection in optical remote sensing images: A survey and a new benchmark, ISPRS Journal of Photogrammetry and Remote Sensing, 2019

X. Zhou, D. Wang, et al.

Objects as points

arXiv, 2019

H. Yu, G. Li, et al.

The unmanned aerial vehicle benchmark: Object detection, tracking and baseline $\ensuremath{\mathsf{IJCV}}$, 2019

K. Chen, J. Wang, et al.

MMDetection: Open mmlab detection toolbox and benchmark arXiv, 2019

Thanks!