

Hierarchical Deep Hashing for Fast Large Scale Image Retrieval

Yongfei Zhang, Cheng Peng, Jingtao Zhang, Xianglong Liu, Shiliang Pu, Changhuai Chen Beihang University, Beijing, China & Hikvision, Hangzhou, China Jan.10-15, 2021, Milan, Italia

- Background & Motivations
- Proposed Hierarchical Deep Hashing Scheme HDHash
 - -System Overview
 - -Supervised Training of Hierarchical Deep Hashing
 - -HDHash-based Hierarchical Coarse-to-fine Retrieval
- Performance Evaluation
- Conclusions and Remarks

- Background & Motivations
- Proposed Hierarchical Deep Hashing Scheme HDHash
 - -System Overview
 - -Supervised Training of Hierarchical Deep Hashing
 - -HDHash-based Hierarchical Coarse-to-fine Retrieval
- Performance Evaluation
- Conclusions and Remarks

1. Background & Motivations

• Image Retrieval: supporting techniques for various applications

1. Background & Motivations

• Related Works: Deep Hashing-HashNet[1]

Idea: Hierarchical Deep Hashing + Course-to-fine Retrieval

- Background & Motivations
- Proposed Hierarchical Deep Hashing Scheme HDHash
 - -System Overview
 - -Supervised Training of Hierarchical Deep Hashing
 - -HDHash-based Hierarchical Coarse-to-fine Retrieval
- Performance Evaluation
- Conclusions and Remarks

2.1 System Overview

Hash Codes Generation: Supervised Training of Hierarchical Deep Hashing

Image Retrieval: HDHash-based Hierarchical Coarse-to-fine Retrieval

2.2 Supervised Training of Hierarchical Deep Hashing

• Hash Codes Generation: Supervised Training of Hierarchical Deep Hashing

$$L_{HashNet_i} = \sum_{s_{jk} \in S} \alpha_{jk} (log(1 + exp(\beta < h_{i,j}, h_{i,k} >)))$$
$$-\beta s_{jk} < h_{i,j}, h_{i,k} >)$$

$$L_{HDHash} = \sum_{i=1}^{K} w_i L_{HashNet_i}$$

$$w_i >= w_j, if \ i < j, \ \forall \ i, j = 1, 2, ..., K.$$

2.3 HDHash-based Hierarchical Coarse-to-fine Retrieval

Image Retrieval: HDHash-based Hierarchical Coarse-to-fine Retrieval

HDHash

HashNet 1

- Background & Motivations
- Proposed Hierarchical Deep Hashing Scheme HDHash
 - -System Overview
 - -Supervised Training of Hierarchical Deep Hashing
 - -HDHash-based Hierarchical Coarse-to-fine Retrieval
- Performance Evaluation
- Conclusions and Remarks

- Datasets:
 - ImageNet [24],
 - NUSWIDE[25]
 - MS COCO [26]
- Comparable Schemes:
 - SOTA deep hashing: CNNH [4], DNNH[5], DHN [3], HashNet [1]
 - Supervised shallow hashing schemes: KSH [10] and SDH [11]
 - Classical unsupervised hashing schemes: LSH [2], SH [9]
 - Quantization-based retrieval algorithms: ITQ [14] and OPQ[21]

- Comparison metrics
 - Retrieval precision
 - Mean Average Precision (MAP)

- Retrieval efficiency
 - Search speed
 - Memory requirement

Mean Average Precision (MAP)

TABLE I
COMPARISON OF MAP FOR HDHASH AND COMPARABLE SCHEMES ON THREE DATASETS

Method		HDHash	HashNet [1]	DHN [3]	DNNH [5]	SDH [11]	CNNH [4]	KSH [10]	SH [9]	LSH [2]	ITQ [14]	OPQ [21]
ImageNet	16bits 32bits 48bits 64bits	$\begin{array}{r} 0.4902 \\ \hline 0.6253 \\ \hline 0.6530 \\ \hline 0.6735 \end{array}$	0.5059 0.6306 0.6633 0.6835	0.3106 0.4717 0.5420 0.5732	0.2903 0.4605 0.5301 0.5645	0.2985 0.4551 0.5549 0.5852	0.2812 0.4498 0.5245 0.5538	0.1599 0.2976 0.3422 0.3943	0.2066 0.3280 0.3951 0.4191	0.1007 0.2350 0.3121 0.3596	0.3255 0.4620 0.5170 0.5520	0.41 - 0.48
NUS-WIDE	16bits	0.6626	0.6623	0.6374	0.5976	0.4756	0.5696	0.3561	0.4058	0.3283	0.5086	-
	32bits	0.6953	0.6988	0.6637	0.6158	0.5545	0.5827	0.3327	0.4209	0.4227	0.5425	0.52
	48bits	0.7098	0.7114	0.6690	0.6345	0.5786	0.5926	0.3124	0.4211	0.4333	0.5580	-
	64bits	0.7186	0.7163	0.6714	0.6388	0.5812	0.5996	0.3368	0.4104	0.5009	0.5611	0.60
MS COCO	16bits	0.6831	0.6873	0.6774	0.5932	0.5545	0.5642	0.5212	0.4951	0.4592	0.5818	-
	32bits	0.7186	0.7184	0.7013	0.6034	0.5642	0.5744	0.5343	0.5071	0.4856	0.6243	0.69
	48bits	0.7291	0.7301	0.6948	0.6045	0.5723	0.5711	0.5343	0.5099	0.5440	0.6460	-
	64bits	0.7301	0.7362	0.6944	0.6099	0.5799	0.5671	0.5361	0.5101	0.5849	0.6574	0.71

• Search speed & Memory requirement

TABLE II

COMPARISON OF RETRIEVAL EFFICIENCY AND MEMORY REQUIREMENTS

Method	search time (ms)	memory usage (MB)		
HDHash(0.3)	12.226	223		
HashNet [1]	60	1529		
speedup (HashNet [1]/HDHash(0.3))	4.91	6.86		

• Note: 3-level hash codes of 8+16+40bits for HDHash and 1-level codes of 64 bits for HashNet

- Background & Motivations
- Proposed Hierarchical Deep Hashing Scheme HDHash
 - -System Overview
 - -Supervised Training of Hierarchical Deep Hashing
 - -HDHash-based Hierarchical Coarse-to-fine Retrieval
- Performance Evaluation
- Conclusions and Remarks

Conclusions and Remarks

- A novel hierarchical deep hashing scheme HDHash to speed up the state-of-the-art deep hashing methods for fast large scale image retrieval
- Multi-level tree-structured hash codes could be generated end-to-end, based on which the coarse-to-fine retrieval can be conducted.
- HDHash achieves better or comparable accuracy with significantly improved efficiency and reduced memory as compared to SOTA fast image retrieval schemes.
- Could be enhanced with more hierarchical levels and further optimization of the tree-based index structure
- Could also be further applied to other feature extraction, indexing and similarity computations scenario, to further enhance the performance

THANK YOU!

Questions/Comments?

Yongfei Zhang, Associate Professor

Tel: +86-13811424077(Beijing, China)/(213)284-4430 (Los Angeles, CA, US)

Email: yfzhang@buaa.edu.cn / yz 515@usc.edu

