SPEEDING-UP PRUNING FOR ARTIFICIAL NEURAL NETWORKS:
PRESENTING ACCELERATED ITERATIVE MAGNITUDE PRUNING

Marco Zullich
Eric Medvet
Felice Andrea Pellegrino

University of Trieste (Italy)

Alessio Ansuini
Area Research & Technology (Italy)
ITERATIVE MAGNITUDE PRUNING: STATE OF THE ART
PRUNING IN ANN & MAGNITUDE PRUNING

- Pruning a Neural Network → removing parameters from it
- Large number of criteria for pruning
- Magnitude pruning deletes parameters having small magnitude

\[p = 15\% \]

Unstructured sparsity
We can take advantage of it via specific libraries (CUsparse) or HW (Nvidia A100 GPU)

Pruning rate
proportion of parameters to remove from the network
= prune the lowest 15% of parameters in magnitude
- A simple application of pruning degrades the ANN performance
- After pruning, a **re-training phase** follows
- Re-training is operated only on parameters having survived the pruning
MAIN TECHNIQUES FOR RE-TRAINING

Weight Rewind (WR)

- Store random initialization of parameters Θ_0 of unpruned ANN
- After pruning, **reset** surviving weights to Θ_0
- Re-train for the same number of epochs keeping the same LR annealing schedule

Frankle and Carbin, 2019 «The Lottery Ticket Hypothesis»

Learning Rate Rewind (LRR)

- **Do not reset** weights after pruning
- Re-train for the same number of epochs keeping the same LR annealing schedule

Renda, Frankle and Carbin, 2020 «Comparing Rewinding and Fine-tuning in Neural Network Pruning»
PROS AND CONS OF WR & LRR

PROS

Reach very high pruning rates (>95%) with **similar or better performance** w.r.t. unpruned network

CONS

Especially if compared to other methods, requires application of many **sequential iterations**

If a target sparsity is known from the beginning, is it possible to fast-forward the execution of IMP for all the iterations but the last one?
PRESENTING ACCELERATED ITERATIVE MAGNITUDE PRUNING
ACCELERATING IMP

- Unpruned ANN trained for T epochs
- Prune for K iterations
- Iterations $1, \ldots, K - 1$: retrain for τ epochs, $\tau \ll T$
- Accelerated Iterative Magnitude Pruning (AIMP)
- Test with VGG-19 on CIFAR10 dataset
- $T = 160$; $K = 20$; $p = 0.2$

![Graph showing test-set accuracy versus proportion of unpruned parameters.]

- 20 iterations – target sparsity ~ 1.35% surviving weights
- Baseline – classic IMP; retrain = w/ WR
- IMP + WR: 90.64%
- $\tau = 50$: 90.71%
- $\tau = 40$: 90.82%
- $\tau = 30$: 90.39%
- $\tau = 20$: 90.01%

3.47x faster than IMP

Baseline – classic IMP; retrain = w/ WR
Trials on IMP + LRR were not as satisfying as IMP + WR

Median accuracy: 93.68 % VS. 63.62 % ($\tau = 50$)

No proper criterion to determine an optimal τ

AIMP seems to work only when overall pruning rate is very high ($\geq 98\%$)
Thanks for the attention!

Contacts: marco.zullich@phd.units.it