

SPEEDING-UP PRUNING FOR ARTIFICIAL NEURAL NETWORKS: PRESENTING ACCELERATED ITERATIVE MAGNITUDE PRUNING

Marco Zullich Eric Medvet Felice Andrea Pellegrino University of Trieste (Italy) Alessio Ansuini Area Research & Technology (Italy)

ITERATIVE MAGNITUDE PRUNING: STATE OF THE ART

PRUNING IN ANN & MAGNITUDE PRUNING

- Pruning a Neural Network → removing parameters from it
- Large number of criteria for pruning
- Magnitude pruning deletes parameters having small magnitude

PRUNING AND RE-TRAINING

- A simple application of pruning degrades the ANN performance
- After pruning, a **re-training phase** follows
- Re-training is operated only on parameters having survived the pruning

ITERATIVE MAGNITUDE PRUNING (IMP)

MAIN TECHNIQUES FOR RE-TRAINING

PROSAND CONS OF WR & LRR

PROS

Reach very high pruning rates (>95%) with **similar or better performance** w.r.t. unpruned network

CONS

Especially if compared to other methods, requires application of many sequential iterations

If a target sparsity is known from the beginning, is it possible to fastforward the execution of IMP for all the iterations but the last one?

PRESENTING ACCELERATED ITERATIVE MAGNITUDE PRUNING

ACCELERATING IMP

- Unpruned ANN trained for T epochs
- Prune for K iterations
- Iterations 1, ..., K 1: retrain for τ epochs, $\tau \ll T$
- Accelerated Iterative
 Magnitude Pruning (AIMP)
- Test with VGG-19 on CIFAR10 dataset
- *T* = 160; *K* = 20; *p* = 0.2

DRAWBACKS & DIRECTIONS FOR FUTURE WORK

- Trials on IMP + LRR were not as satisfying as IMP + WR
- Median accuracy: 93.68 % VS. 63.62 % (τ = 50)

No proper criterion to determine an optimal τ

• AIMP seems to work only when **overall pruning rate** is very high (\geq 98%)

ICPR 2020 – Zullich, Pellegrino, Medvet, Ansuini

Thanks for the attention!

Contacts: marco.zullich@phd.units.it

