

Localization & Transformation Reconstruction of Image Regions: An Extended Congruent Triangles Approach

FAKULTÄT FÜR

INFORMATIK

M.Sc. Afra'a Ahmad Alyosef M.SC. Christian Elias Prof. Dr.Andreas Nürnberger afraa.ahmad-alyosef@ovgu.de

Introduction: Image Near-Duplicates

1

Near duplicate images in this work:

- Zoomed-in panorama with scale change
- Flipped or flipped sub-image
- Shifted image
- Rotated sub-image

Localization and Transformation Reconstruction of Image Regions: An Extended Congruent Triangles Approach 1/14/2021

Approaches to detect the correlation between images

- Non-deterministic approaches: RANSAC, PROSAC, LMEDS
 - Pro: low computing costs
 - Contra: performance decreases when the false feature matches increase

- Deterministic approaches
 - Pro: detect the false feature matches
 - Contra: high computation costs, cannot detect all kinds of transformations

Goal

- Detect the correlation between two image
 - When false feature matches more than 50% of total matches
 - Too few feature matches are detected (lesser than six)
- Reduce the computation costs
- Split the feature matches into inliers and outliers
- Based on the correlated features (inliers) define the kind of transformation between near-duplicate images

Proposed Approach: ECOTA

Extended Congruent Triangles Approach:

Extension of our previous approach COTA

Proposed Approach:

Extended Congruent Triangles Approach

In addition to edge in COTA we compute the gradient of edges

$$\varphi_{ij} = \tan 2(m_{ij}) = \tan 2\left(\frac{y_j - y_i}{x_j - x_i}\right) \quad \varphi'_{ij} = \tan 2(m'_{ij}) = \tan 2\left(\frac{y'_j - y'_i}{x_j' - x'_i}\right)$$
$$\left|\varphi_{ij} - \varphi'_{ij}\right| < \vartheta$$

Proposed Approach: ECOTA

Extended Congruent Triangles Approach: Estimate rotation & flipping

Rotation:

$$\left|\varphi_{ij} - \varphi_{ij}\right| < \theta \pm \vartheta$$

Flipping:

$$\left|\varphi_{ij} - \varphi'_{ij}\right| = 0 \pm \vartheta \quad or \quad \left|\varphi_{ij} - \varphi'_{ij}\right| = \pi \pm \vartheta$$

Time Complexity Employing various Keypoints											
Method	RANSAC	PROSAC	LMEDS	ECOTA							
SIFT	1.58 ms	0.72 ms	9.61ms	0.61 ms							
SURF	1.59 ms	0.52 ms	7.94 ms	0.66 ms							
BRISK	2.63 ms	0.62 ms	8.64 ms	0.69 ms							

The performance of ECOTA is evaluated using the following settings:

- Five Datasets are used that contain images of different structures i.e. panoramas, paintings or aerial images (PANO, XOB, Aerial, PAIN, ATRANS)
- Query images are transformed images that are downscaled, rotated, flipped, shifted or cropped from the datasets

Results / Panorama Images

- Panorama benchmark: 20,000 sub-images of different scales and resolutions
- Three kinds of keypoints are utilized: SIFT, SURF and BRISK
- 200 queries (full panoramas)

Comparison of RANSAC, PROSAC, LMEDS & ECOTA

Scale	Method	Detected Correlation			Localization Error				
		RANSAC	PROSAC	LMEDS	ECOTA	RANSAC	PROSAC	LMEDS	ECOTA
100%	SIFT	83.74	83.71	81.91	99.92	0.0016	0.0016	0.0016	0.0013
	SURF	96.75	95.52	96.67	98.20	0.0024	0.0020	0.0020	0.0018
	BRISK	85.37	81.65	85.60	93.16	0.0028	0.0029	0.0028	0.0025
30%	SIFT	78.86	65.98	76.14	97.10	0.0033	0.0036	0.0031	0.0024
	SURF	81.30	72.28	82.46	87.02	0.0040	0.0046	0.0038	0.0035
	BRISK	69.75	59.30	67.44	75.58	0.0049	0.0057	0.0049	0.0045
200%	SIFT	84.55	83.53	80.96	99.96	0.0016	0.0016	0.0016	0.0013
	SURF	81.30	96.83	97.38	98.38	0.0020	0.0019	0.0019	0.0018
	BRISK	95.94	90.18	91.72	96.51	0.0027	0.0025	0.0024	0.0021

Results: Discussion of Outliers Filtering

RANSAC, PROSAC, LMEDS fail in correlation detection, since there are too many outliers or too few feature matches

p-image

ECOTA detects 50% of features matching as outliers (red lines)

ECOTA detects the correlation even only four matches are correct (green lines)

Results: Qualitative Discussion

Localization of sub-images in whole scene using RANSAC (red), PROSAC (yellow), LMEDS (white) & ECOTA (blue). The ground-truth is the Green box.

Sub-image

Sub-image

Sub-image

Localization by all methods correct

Correct localization only by ECOTA

Wrong localization by all methods

Summary

- ECOTA applies the property of congruency triangles with gradient to classify features matching into correlating group (inliers) and non-correlating (outliers).
- ECOTA uses the correlating group of matched features to:
 - Exclude the outliers of feature matches
 - Define the non-relevant images in the list of retrieved images
 - Describe the correlation between two images without any previous details about the content
- ECOTA reduces the computational time of correlation detection
- ECOTA outperforms RANSAC, PROSAC, LMEDS and COTA models in estimating and categorization image correlations

THANK YOU