Localization \& Transformation Reconstruction of Image Regions: An Extended Congruent Triangles Approach

M.Sc. Afra'a Ahmad Alyosef
M.SC. Christian Elias

Prof. Dr.Andreas Nürnberger
afraa.ahmad-alyosef@ovgu.de

Introduction: Image Near-Duplicates

Near duplicate images in this work:

- Zoomed-in panorama with scale change
- Flipped or flipped sub-image
- Shifted image
- Rotated sub-image

(a)

(c)

(b)

(d)

Approaches to detect the correlation between images

- Non-deterministic approaches: RANSAC, PROSAC, LMEDS
- Pro: low computing costs
- Contra: performance decreases when the false feature matches increase
- Deterministic approaches
- Pro: detect the false feature matches
- Contra: high computation costs, cannot detect all kinds of transformations
- Detect the correlation between two image
- When false feature matches more than 50% of total matches
- Too few feature matches are detected (lesser than six)
- Reduce the computation costs
- Split the feature matches into inliers and outliers
- Based on the correlated features (inliers) define the kind of transformation between near-duplicate images

Proposed Approach: ECOTA

Extended Congruent Triangles Approach:

Extension of our previous approach COTA

Proposed Approach:

Extended Congruent Triangles Approach

In addition to edge in COTA we compute the gradient of edges

$$
\begin{gathered}
\varphi_{i j}=\tan 2\left(m_{i j}\right)=\tan 2\left(\frac{y_{j}-y_{i}}{x_{j}-x_{i}}\right) \quad \varphi_{i j}^{\prime}=\tan 2\left(m_{i j}^{\prime}\right)=\tan 2\left(\frac{y_{j}^{\prime}-y^{\prime}}{x_{j}^{\prime}-x_{i}^{\prime}}\right) \\
\left|\varphi_{i j}-\varphi_{i j}^{\prime}\right|<\vartheta
\end{gathered}
$$

Proposed Approach: ECOTA

Extended Congruent Triangles Approach: Estimate rotation \& flipping

Rotation:

$$
\left|\varphi_{i j}-\varphi_{i j}^{\prime}\right|<\theta \pm \vartheta
$$

Flipping:

$$
\left|\varphi_{i j}-\varphi_{i j}^{\prime}\right|=0 \pm \vartheta \quad \text { or } \quad\left|\varphi_{i j}-\varphi_{i j}^{\prime}\right|=\pi \pm \vartheta
$$

Time Complexity Employing various Keypoints				
Method	RANSAC	PROSAC	LMEDS	ECOTA
SIFT	1.58 ms	0.72 ms	9.61 ms	$\mathbf{0 . 6 1} \mathbf{~ m s}$
SURF	1.59 ms	$\mathbf{0 . 5 2} \mathbf{~ m s}$	7.94 ms	0.66 ms
BRISK	2.63 ms	$\mathbf{0 . 6 2} \mathbf{~ m s}$	8.64 ms	0.69 ms

Results/ Benchmarks

The performance of ECOTA is evaluated using the following settings:

- Five Datasets are used that contain images of different structures i.e. panoramas, paintings or aerial images (PANO, XOB, Aerial, PAIN, ATRANS)
- Query images are transformed images that are downscaled, rotated, flipped, shifted or cropped from the datasets

Results/ Panorama Images

- Panorama benchmark: 20,000 sub-images of different scales and resolutions
- Three kinds of keypoints are utilized: SIFT, SURF and BRISK
- 200 queries (full panoramas)

Comparison of RANSAC, PROSAC, LMEDS \&ECOTA

Scale	Method	Detected Correlation				Localization Error			
		RANSAC	PROSAC	LMEDS	ECOTA	RANSAC	PROSAC	LMEDS	ECOTA
100\%	SIFT	83.74	83.71	81.91	99.92	0.0016	0.0016	0.0016	0.0013
	SURF	96.75	95.52	96.67	98.20	0.0024	0.0020	0.0020	0.0018
	BRISK	85.37	81.65	85.60	93.16	0.0028	0.0029	0.0028	0.0025
30\%	SIFT	78.86	65.98	76.14	97.10	0.0033	0.0036	0.0031	0.0024
	SURF	81.30	72.28	82.46	87.02	0.0040	0.0046	0.0038	0.0035
	BRISK	69.75	59.30	67.44	75.58	0.0049	0.0057	0.0049	0.0045
200\%	SIFT	84.55	83.53	80.96	99.96	0.0016	0.0016	0.0016	0.0013
	SURF	81.30	96.83	97.38	98.38	0.0020	0.0019	0.0019	0.0018
	BRISK	95.94	90.18	91.72	96.51	0.0027	0.0025	0.0024	0.0021

Results: Discussion of Outliers Filtering

RANSAC, PROSAC, LMEDS fail in correlation detection, since there are too many outliers or too few feature matches

Sub-image

Sub-image

ECOTA detects the correlation even only four matches are correct (green lines)

Results: Qualitative Discussion

Localization of sub-images in whole scene using RANSAC (red), PROSAC (yellow), LMEDS (white) \& ECOTA (blue). The ground-truth is the Green box.

Sub-image

Sub-image

Sub-image

Localization by all methods correct

Correct localization only by ECOTA

Wrong localization by all methods

- ECOTA applies the property of congruency triangles with gradient to classify features matching into correlating group (inliers) and non-correlating (outliers).
- ECOTA uses the correlating group of matched features to:
- Exclude the outliers of feature matches
- Define the non-relevant images in the list of retrieved images
- Describe the correlation between two images without any previous details about the content
- ECOTA reduces the computational time of correlation detection
- ECOTA outperforms RANSAC, PROSAC, LMEDS and COTA models in estimating and categorization image correlations

THANK YOU

