25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION - ICPR2020

Paper ID 1107

Signal Generation using 1d Deep Convolutional Generative Adversarial Networks for Fault Diagnosis of Electrical Machines

By

Russell Sabir, Daniele Rosato, Sven Hartmann and Clemens Gühmann

SEG Automotive Germany GmbH

Technische Universität Berlin

12th January 2021

Contents

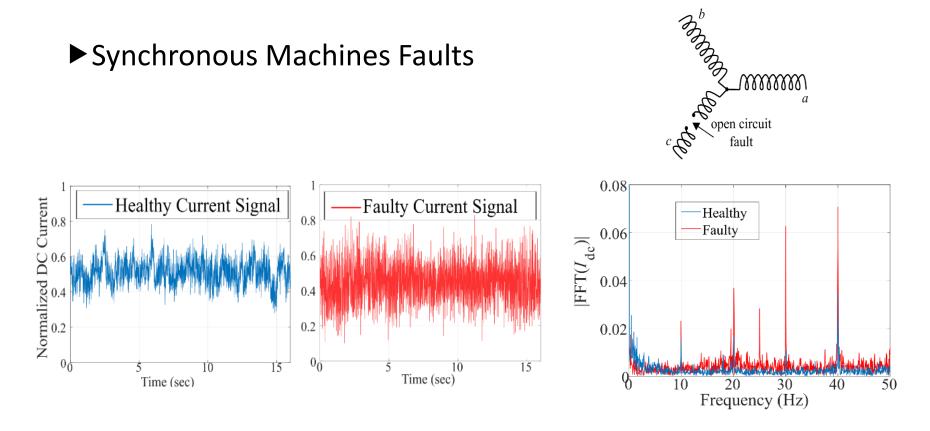
SIGNAL GENERATION USING 1D DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS FOR FAULT DIAGNOSIS OF ELECTRICAL MACHINES

Motivation

- Problem Statement
- ► GAN Architecture
- ► Evaluation of GAN using FID
- Generated Data Results
- ► Further evaluation of GAN
- ► Conclusion

Motivation

SIGNAL GENERATION USING 1D DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS FOR FAULT DIAGNOSIS OF ELECTRICAL MACHINES



Data generation using GAN

Problem Statement

4

SIGNAL GENERATION USING 1D DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS FOR FAULT DIAGNOSIS OF ELECTRICAL MACHINES

1-D convolution neural network with Wavelet Packet Transform 98.8% accuracy

(I. Kao, W. Wang, Y. Lai and J. Perng, "Analysis of Permanent Magnet Synchronous Motor Fault Diagnosis Based on Learning," in IEEE Transactions on Instrumentation and Measurement)

Stacked Autoencoder with softmax layer 96.4% accuracy

(I. Kao, W. Wang, I. Chiang and J. Perng, "Implementation of Permanent Magnet Synchronous Motor Fault Diagnosis by a Stacked Autoencoder," 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW))

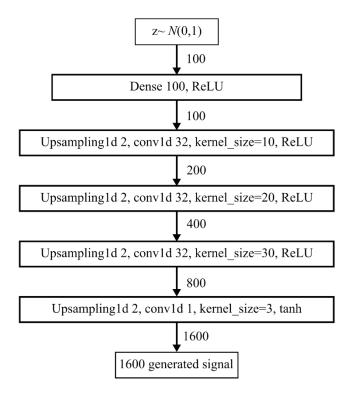
Challenges with Deep Learning Algorithms

- Deep Learning methods require large amounts of data
- ► Algorithms don't generalize with large data

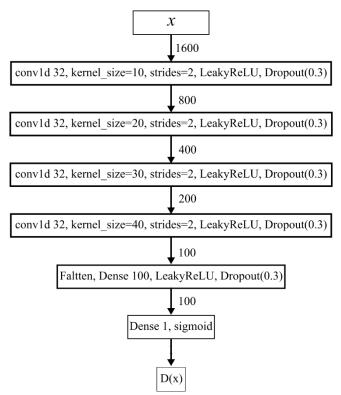
GAN Architecture

SIGNAL GENERATION USING 1D DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS FOR FAULT DIAGNOSIS OF ELECTRICAL MACHINES

Generator



Discriminator



25th International Conference on Pattern Recognition - ICPR2020 | 2021-01-12

© SEG Automotive Germany GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Evaluation of GAN using FID

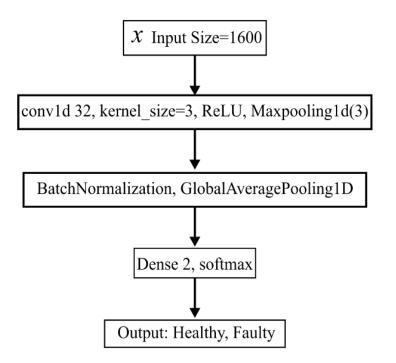
SIGNAL GENERATION USING 1D DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS FOR FAULT DIAGNOSIS OF ELECTRICAL MACHINES

► Fréchet Inception Distance (FID)

 $FID = \|\mu_1 - \mu_2\|^2 + Tr(C_1 + C_2 - 2(C_1C_2)^{1/2})$

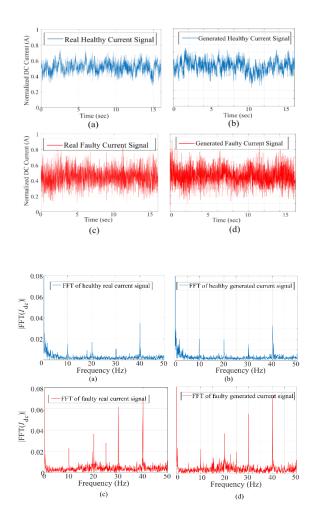
where, μ_1 and μ_2 are the feature wise mean C_1 and C_2 are the covariance matrices And *Tr* is the trace of the matrix

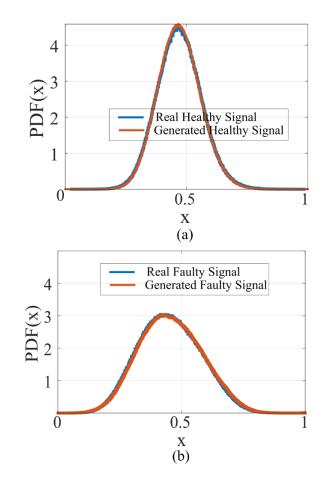
► Threshold: 5 x 1E-5



Generated Data Results

SIGNAL GENERATION USING 1D DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS FOR FAULT DIAGNOSIS OF ELECTRICAL MACHINES





25th International Conference on Pattern Recognition - ICPR2020 | 2021-01-12

© SEG Automotive Germany GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

3

Further evaluation of GAN

SIGNAL GENERATION USING 1D DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS FOR FAULT DIAGNOSIS OF ELECTRICAL MACHINES

Creativity: The generated signals are not duplicates of the real signals.

Diversity: The generated signals are not duplicates of each other.

$$SSIM(x, y) = \frac{(2\mu_x\mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

 μ_x is the mean value of x
 μ_y is the mean value of y
 σ_x^2 is the variance of x
 σ_y^2 is the variance of x and y
 $c_1 = (k_1L)^2$ and $c_2 = (k_2L)^2$ are the
variables to stabilize to the division with
weak denominator
In our case $k_1 = k_2 = 0.05$, and L is the
dynamic range of the signal value

 $Creativity = \frac{Number \ of \ Nonduplicate \ Signal}{Number \ of \ Signals \ in \ the \ generated \ dataset}$

$$Diversity = -\sum_{i=1}^{m} p_i \log p_i$$

where,
$$p_i = |C_i| / \sum_{n=1}^{m} |C_n|$$

m is the number of clusters

 $|C_i|$ is the number of signals in the cluster where i = 1, ..., m

3 25th International Conference on Pattern Recognition - ICPR2020 | 2021-01-12

© SEG Automotive Germany GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Conclusion

SIGNAL GENERATION USING 1D DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS FOR FAULT DIAGNOSIS OF ELECTRICAL MACHINES

	1d DCGAN	1d DCGAN	Optimal
	trained on	trained on	values for
	Healthy signals	Faulty signals	10000 signal
			dataset
Creativity	1	1	1
Diversity	9.0	8.7	9.2

- ► 1d signals generation using DCGAN
- ► Evaluation using FID distance
- ► Further evaluation using Creativity and Diversity
- Generated Signals are statically rich and are uncorrelated to the real signals

SIGNAL GENERATION USING 1D DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS FOR FAULT DIAGNOSIS OF ELECTRICAL MACHINES

THANK YOU

25th International Conference on Pattern Recognition - ICPR2020 | 2021-01-12 © SEG Automotive Germany GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

