Combining GANs and AutoEncoders for Efficient Anomaly Detection

<u>Fabio Carrara</u>¹, Giuseppe Amato¹, Luca Brombin², Fabrizio Falchi¹, Claudio Gennaro¹ ¹ISTI CNR, Pisa, Italy — ²University of Pisa

- 🔀 <u>fabio.carrara@isti.cnr.it</u>
- https://github.com/fabiocarrara/cbigan-adv

ICPR 2021 - January, 14th Milan, Italy (Virtual)

The Problem: Visual Anomaly Detection

GOAL — detect anomalous images (assign either ✔ or ★ to input image)

HOW — Fit *generative models* to reconstruct non-anomalous inputs (one-class training, only are commonly available in the training phase)

Larger difference w.r.t input (<u>defects are missing</u>) \Rightarrow

The State of the Art

Generative models in reconstruction-based AD often belong to **GAN** or **AE** families.

Two main classes of methodology:

- **Iterative methods** reconstructions are optimized via multiple iterations for each input
 - better reconstructions, but very expensive
 - Es: AnoGAN, VAE-grad
- **Single-pass methods** reconstruction obtained in a single forward pass (often an Encoder-Decoder)
 - more efficient, less precise reconstructions
 - Es: EGBAD (BiGAN), AE_{L2/SSIM}, AVID, LSA, etc.

Among single-pass methods, the two commonly approaches adopted are:

GANs

+ realistic outputs

AutoEncoders

+ preserve alignment w.r.t input — blurry reconstructions

- (s)low control on reconstruction

CBiGAN: Consistency BiGAN Model

We propose CBiGAN — a combined model.

- + generalizes both <u>Bidirectional</u> <u>GANs</u> (α = 0) and <u>AutoEncoders</u> (α = 1)
- + α can be tuned to balance the regularization
- + produces **realistic** outputs **fast** that are **consistent** with inputs

Evaluation: MVTec-AD Dataset

MVTec-AD — benchmark of visual AD for industrial applications

	Textures	Objects	Overall
Iterative Methods			
AnoGAN	0.54	0.56	0.55
VAE-grad	0.78	0.76	0.77
Single-pass Methods			
AE ₁₂	0.65	0.74	0.71
AVID	0.67	0.75	0.73
LSA	0.69	0.75	0.73
EGBAD (BIGAN)	0.66	0.58	0.61
CBiGAN (ours)	<u>0.84</u>	0.73	<u>0.76</u>

↑ Balanced Accuracy = (TPR + FPR) / 2 when using the Youden threshold. Best among single-pass methods

✤ Area Under the ROC Curve (AuROC)

	Textures	Objects	Overall
AE _{L2}	0.80	0.74	0.75
GeoTrans	0.59	0.71	0.67
GANomaly	0.77	0.76	0.76
EGBAD	0.66	0.57	0.60
CBiGAN (ours)	0.85	0.73	0.77

Query Image	BiGAN (recon.)	BiGAN (diff.)	Ours (recon.)	Ours (diff.)
	Ó		Ó	
A Real Provide A Real ProvideA Real ProvideA Real ProvideA Real ProvideA Real Pro	-	a the second sec	The second	A

Conclusions and Future Work

- GOAL detect anomalous images: assign either 🖌 or 🔀 to input image
- **CONSTRAINTS** one-class AD: only good images available
- METHOD reconstruction-based AD: difference between input and reconstruction
 <u>Iterative</u> vs <u>Single-Pass</u> methods: effectiveness vs efficiency
- CONTRIBUTION we propose <u>Consistency BiGAN</u> for one-class single-pass AD
 - **combines** and **generalizes** Bidirectional GANs and AutoEncoders
 - provides **reconstruction ability** of the former and **consistency** of the latter
 - efficient (single-pass) with results comparable to iterative methods
- FUTURE WORK address Anomaly Localization (assign either 🖌 or 🔀 to each pixel)