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Bayesian Approach to RL
Environment: CARLA Simulator

Fig.2

Images from “CARLA: An Open Urban Driving Simulator”
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Bayesian Approach to RL

Input: Vehicle Front View Camera

Decision Making: Epsilon Greedy Policy

Learning Strategy: On-Policy Probabilistic Q-Learning

Loss Function: Temporal Difference Error
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Bayesian Approach to RL IIIII|ch
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Bayesian Approach to RL IIIII\T‘ICPR?%
Learning Paradigm
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* Clustering input states through a GMM
* (Calculating action probabilities based on Bayes rule and the component wise probabilities p(m|a)

* Applying standard discrete Q-Learning through state-action table

Learning Rate
R 7 Temporal Difference Error

Q(mtr at) < Q(mtr at)"'a TDerror

State-Action Value Function .
Equation (1)

TDgyror = Reward + yQ(myyq1,a:41) — Q(My, a;) Equation (2)

\

Forgetting Factor
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Bayesian Approach to RL

Reward Signal

(—7p, if Collision
- —Tky " T, else if Off-road
—Tk, - 71, else if Opposite-lane
T else,
\ "speed Tt = T + T'road-view-
o . Ut —Vwarget \ 2 ooy
Tka ( Vtarget ’ if vt < 0
. _ , Vt—Vuge \2 o
Tspeed = § —Tks * . - () , 0 <y < Utarget
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Control Signal

From Simulator

.

Steer signal
Throttle signal
Brake signal
Reverse gear

Discrete Action Space

D=

Drive Forward
Turn to Left

Turn to Right
Drive Backward
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Bayesian Approach to RL IIII

Metrics

* Being offroad

* Being in the meeting lane

* Being either offroad or in the meeting lane
* Accomplished tasks

* Tasks without collisions

* Total distance driven
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Experiments

TGDG: Training and deployment using GT

TEDE: Training and deployment using Estimation
TGDE: Training on GT but deployment using Estimation
TEDG: Training on Estimation but deployment using GT

Reward TDerror
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Bayesian Approach to RL IIII

R e S u It S Model Offroad  Otherlane  Either  Success  No collision Score Dist[m]

TGDG average 0.0% 11.1% 11.1% 96.8% 84.1% 0.90 (£0.07) 11132 (£703)
best model 0.0% 2.4% 2.4% 100.0% 100.0% 0.99 11168
TGDE average 0.1% 11.6% 11.7% 89.0% 80.8% 0.86 (£0.073) 11392 (+232)
best model 0.0% 2.5% 2.5% 100.0% 100.0% 0.99 11119
TEDE average 11.4% 29.8% 37.9% 34.5% 73.4% 0.57 (+0.3) 10209 (41950)
best model 0.0% 17.5% 17.5% 100.0% 100.0% 0.94 11227
TEDG average 11.5% 25.8% 36.3% 33.3% 78.3% 0.58 (+0.3) 11437 (£2201)
best model 0.0% 22.7% 22.7% 100.0% 100.0% 0.92 11238
RL 42.4% 21.0% 52.4% 41.7% 50.0% 0.46 8787
IL 8.3% 0.7% 8.4% 86.9% 90.5% 0.90 11293
tab.1
| New Town New Town & new weather
Infraction type | MP IL RL TGDG TEDE TEDG TGDE | MP IL RL TGDG TEDE TEDG TGDE
Opposite lane 0.45 1.12  0.23 2.14 0.18 0.24 4.10 0.40 0.78 0.21 2.13 0.18 0.25 293
Sidewalk 046 0.76 043 0.40 10.24 9.80 0.11 0.43 0.81 048 0.39 6.64 9.80 0.10
Collision-static 0.44 040 0.23 2.52 2.16 2.18 0.55 045 028 0.25 3.55 1.53 3.27 0.79
Collision-vehicle 0.51 059 041 0.34 0.22 0.27 0.38 047 044 037 0.33 0.26 0.24 0.34
Collision-pedestrian 1.40 1.88 2.55 1.4 1.20 1.35 0.53 1.46 1.41 2.99 1.39 0.69 1.13 1.31
tab.2
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Conclusion and Future Plans IIIII)ICPR?&:;

* Continuous action space
* Moving from virtual to the real-world
* Design and implementation of realistic road netwoks
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Thank you for your attention!
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