A modified Single-Shot multibox Detector for beyond Real-Time Object Detection

Georgios Orfanidis[†], Konstantinos Ioannidis[†], Stefanos Vrochidis[†], Anastasios Tefas* and Ioannis Kompatsiaris[†]

[†]Information Technologies Institute

Centre for Research and Technology, Hellas *Department of Informatics

Aristotle University of Thessaloniki

ARISTOTLE UNIVERSITY OF THESSALONIKI

Outline

INTRODUCTIONRELATED WORKMETHOD

Adjusted loss classification weights

Selecting the proper decision layers

Balancing dataset

Results on Pascal Voc 2007 dataset

Results on KITTI dataset

INTRODUCTION

- Object detection remains a fundamental problem in computer vision
- Objective: localize (provide a bounding box) and identify (provide a label) for objects of interest inside an image.

Plane

Solution: Convolutional Neural Networks (CNN) lead to huge improvements

- Typical State-of-the-Art models are computationally expensive
- Restricted integration on systems with limited resources.
- Lighter versions have emerged: Tiny-YOLO, SqueezeDet, MobileNet-SSD

RELATED WORK

Object detection is divided into two major categories based on the potential use of a Region Proposal Network (RPN):

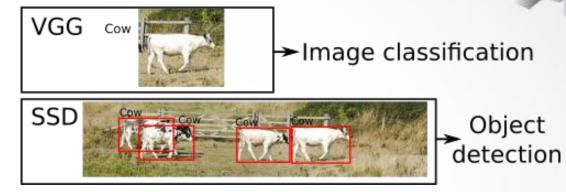
- the single-phase detectors
 - SSD, YOLO, YOLOv2, Retinanet etc
- > the two-phase detectors
 - Fast R-CNN, Faster R-CNN and R-FCN

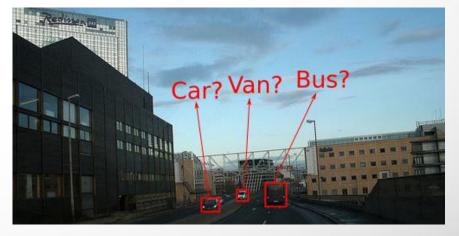
Another categorization regarding the object detection models' purpose:

- state-of-the-art performances with no resource restrictions
- best performance in resource restricted environments
- It is almost exclusively dominated by the single-phase detectors due to the efficiency they inherently possess

METHOD 1/3

- Original SSD modifies VGG network.
- VGG is a robust network but:
 - Uses huge number of parameters, nonetheless
 - Imited use in resource-restricted applications.
- □ SSD suffers in identifying small objects.
 - The shallowest layer which is being used is conv4_3 of VGG
 - \succ typical input size 300x300 \rightarrow corresponds to a **38x38 feature map**
 - too small to identify objects
- SSD includes 10 blocks of CNNs in order to extract features.
 - first 6 blocks belong to the VGG
 - each next block has double the filters of the previous one
 - ➤ The initial number of filters is 64 for the 1st block.





METHOD 2/3

- □ We added an extra shallower decision layer at **conv3_3**
 - with 75x75 feature map
 - ➢ number of default boxes number 8732 → 31232
 - Are shallower features discrimant enough?
- Decreased both the initial number of filters as well as the exponent for increase for the next blocks.
- \Box k_n = b^{an}
 - Initial numbers of filters, parameter b, 48 and 32 were examined
 - parameter a was fixed to 1.7 (from 2 to the original VGG)

METHOD 3/3

□ Number of filters used in the various adaptations

	block	Formula for #filters				
	name	full SSD 64^2	$\frac{\text{SSD_lite_48}}{48^{1.7}}$	$\frac{\text{SSD_lite}_32}{32^{1.7}}$		
	$conv1_x$	64	48	32		
	$conv2_x$	128	81	54		
VGG layers	$conv3_x$	256	138	92		
	$conv4_x$	512	235	157		
	$conv5_x$	512	235	157		
5	fc_x	1024	400	267		
Additional	$conv6_x$	256/512	138/235	92/157		
layers	$conv7_x$	128/256	81/138	54/92		
layers	$conv8_x$	128/256	81/138	54/92		
	$conv9_x$	128/256	81/138	54/92		

Adjusted loss classification weights

- Compensate for unbalanced datasets
- Modified version of SSD classification loss function
 - different weight coefficients for different classes

□ KITTI dataset:

$$> \text{loss} = w_{\text{ped}} * \text{loss}_{\text{ped}} + w_{\text{cycl}} * \text{loss}_{\text{cycl}} + w_{\text{car}} * \text{loss}_{\text{car}}$$

$$\blacktriangleright$$
 w_{ped} = 2.2, w_{cycl} = 2.0, w_{car} = 1.0

Pascal Voc dataset:

$$| oss = w_1^* | oss_1 + ... + w_{20}^* | oss_{20}$$

$$w_i = \frac{AP_{cat}}{AP_i}$$

Cat class has the best performance (used as reference class)

□ Improves performance for classes of **lower overall performance**

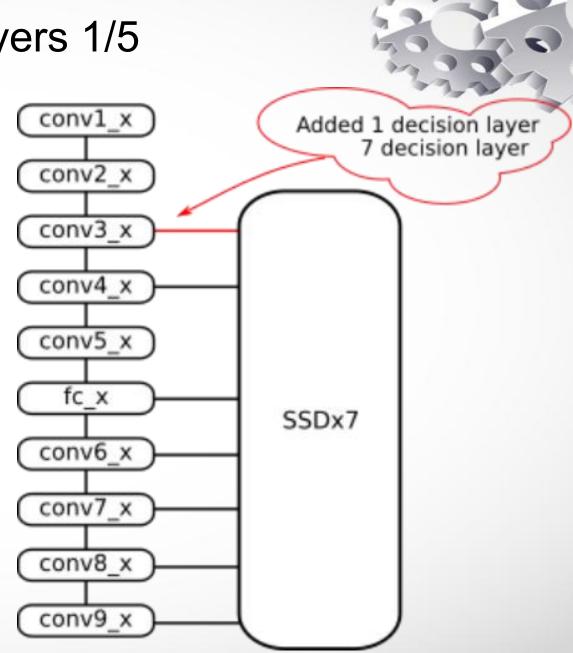
Selecting the proper decision layers 1/5

□ SSD deployed 6 decision layers

- They are used to extract discriminant features.
- Each one with different feature map size.

□ Formation of SSDx7

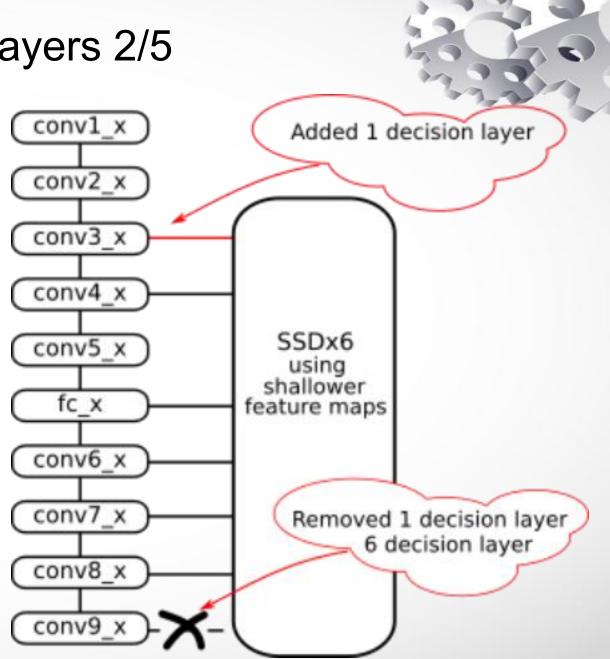
- > 1 additional shallower decision layer
- Better performance in KITTI
- Decreased performance In Pascal Voc



Selecting the proper decision layers 2/5

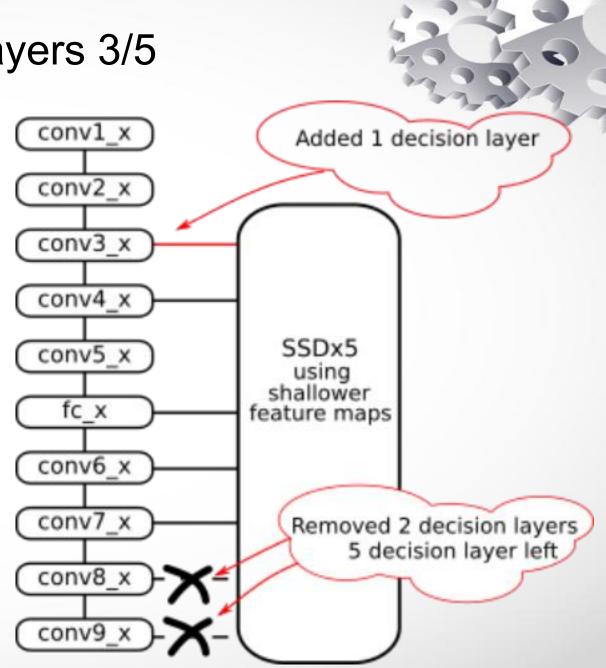
Formation of shallower SSDx6

- 1 additional shallower decision layer used.
- □1 deeper layer being removed
- The (removed) deepest layer useful for bigger objects only.
 - They do not appear in KITTI
 - Are non frequent in Pascal



Selecting the proper decision layers 3/5

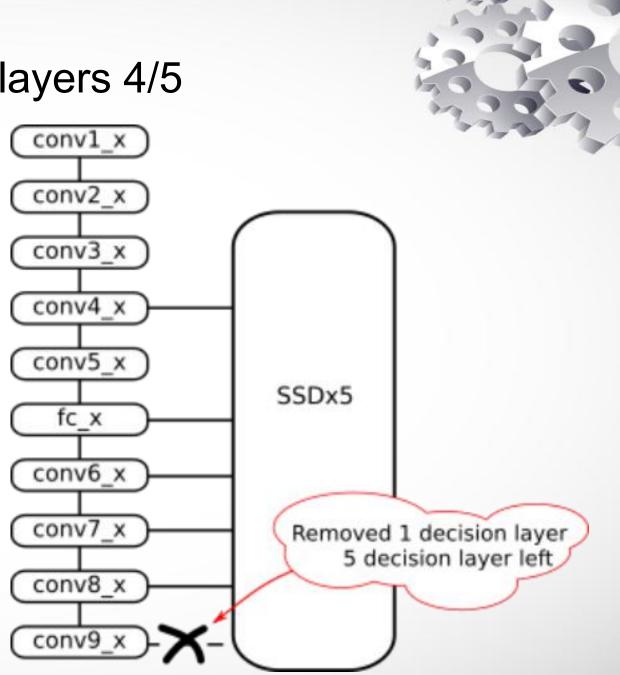
- □ Formation of shallower SSDx5
 - 1 additional shallower decision layer
 - 2 deeper layers were removed
 - Only well performing in KITTI



Selecting the proper decision layers 4/5

Germstion of SSDx5

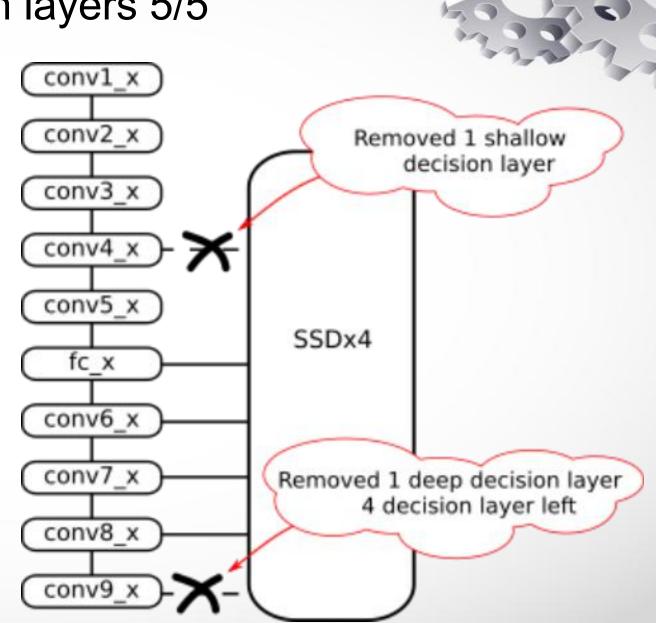
- 1 deeper layer was removed
- Only well performing in Pascal Voc



Selecting the proper decision layers 5/5

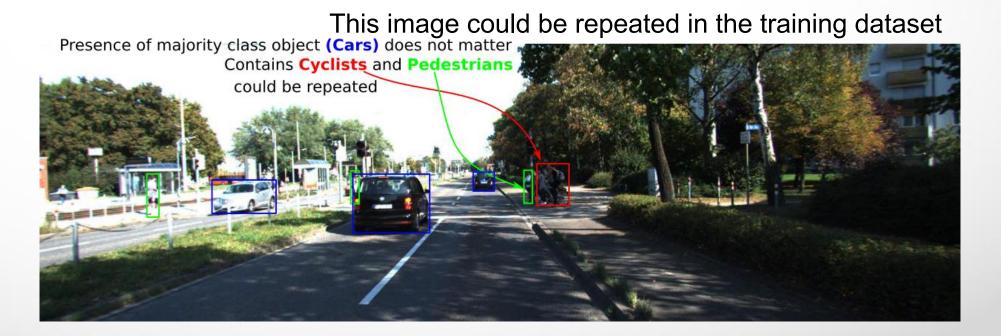
□ Formation of SSDx4

- 1 deeper layer was removed
- 1 shallower layer was also removed
- Only performing well in Pascal Voc



EXPERIMENTS - Balancing the dataset

- **Experiments** were conducted in Pascal Voc and KITTI datasets
- Both datasets are imbalanced.
- Repeat images containing objects from misperforming classes
- Useful for KITTI not for Pascal
- Might improve the performance of some classes but decrease the performance for the remaining classes.



Results on Pascal Voc 2007 dataset 1/4

□ Full model adaptations:

- Incorporating an additional shallower layer did not increase the performance.
- Weighted version of SSDx6, SSDx5 and SSDx6 all tie at 77.6%
- Performance of 3 worst classes did improve on Weighted version.

Model	Decis	mAP		
name	num	initial	last	IIIAI
Full SSDx6	6/6	conv4_3	conv9_2	77.6%
Full SSDx6 vs5	6/5	fc7	conv9_2	71.2%
Full SSDx6 vs5	6/5	conv4_3	conv8_2	77.6%
Full SSDx7	7/7	conv3_3	conv9_2	77.5%
w. Full SSDx6	6/6	conv4_3	conv9_2	77.6%

Model	Average Precision (AP)						
name	bottle	chair	potted plant	3 class			
Full SSDx6	50.50%	60.90%	53.60%	53.90%			
Full SSDx7	49.20%	59.20%	53.30%	55.00%			
v. Full SSDx6	52.50%	61.50%	54.50%	56.17%			

Removing last layer

Using an extra layer

Weighted full version

3 worst performing classes

Results on Pascal Voc 2007 dataset 2/4

□ Medium model adaptations:

Removing shallower layer did not improve the overall performance (almost 5% compared to baseline).

- Inclusion of Last layer did not affect the results.
- Weighted version of SSDx4 model demonstrated best performance at 71.0% mAP.

SSD lite 48x6	6/6	conv4_3	conv9_2	61.7%
SSD lite 48x6 vs5	6/5	fc7	conv9_2	66.6%
SSD lite 48x6 vs5	6/5	conv4_3	conv8_2	61.6%
SSD lite 48x4	4/4	fc7	conv9_2	70.6%
w. SSD lite 48x4	4/4	fc7	conv9_2	71.0%

Removed shallower layer

Full medium model

baseline for medium model,

Weighted truncated version

Results on Pascal Voc 2007 dataset 3/4

Lighter model adaptations:

Removing shallower layer **improved performance** (4% compared to baseline).

Last layer do not affect results.

□ Weighted version SSDx4 model demonstrated best performance at 64.1% mAP

SSD lite 32x6	6/6	conv4_3	conv9_2	55.9%	
SSD lite 32x6 vs5	6/5	conv4_3	conv8_2	55.9%	
SSD lite 32x6 vs5	6/5	fc7	conv9_2	59.9%	
SSD lite 32x4	4/4	fc7	conv8_2	63.1%	
w. SSD lite 32x4	4/4	fc7	conv8_2	64.1%	

Full light model

Removed shallower layer

Weighted truncated version)

Results on Pascal Voc 2007 dataset 4/4

Various light-weight models' performance on Pascal Voc 2007 test set:

Model name	Num Decision Layers	mAP
Tiny-DSOD	6	72.1%
w. SSD lite 48x4	4	71.0%
Pelee	4	70.9%
MobileNet-SSD	4	68.1%
w. SSD lite 32x4	4	64.1%

Results on KITTI dataset 1/4

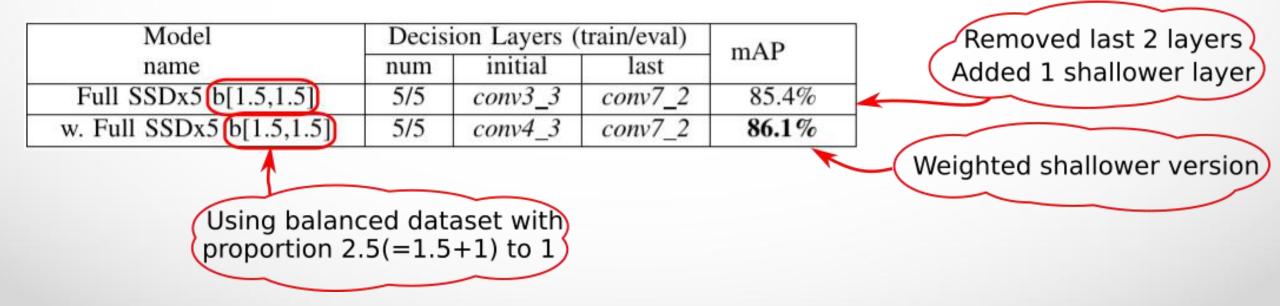
Full model adaptations:

A balanced dataset was used.

Additional **shallower layer improved the performance** significantly.

□ Shallower SSDx5 was used.

□ Weighted version of shallower SSDx5 demonstrated best performance with mAP 86.1%.



Results on KITTI dataset 2/4

- > Balancing the dataset improved to a point (best choice additional 1.5x of the original samples).
- > Additional **shallower layer improved performance** significantly (50%+).
- Weighted version of shallower SSDx5 demonstrated best performance at 84.1% mAP.

Unbalanced (original) dataset

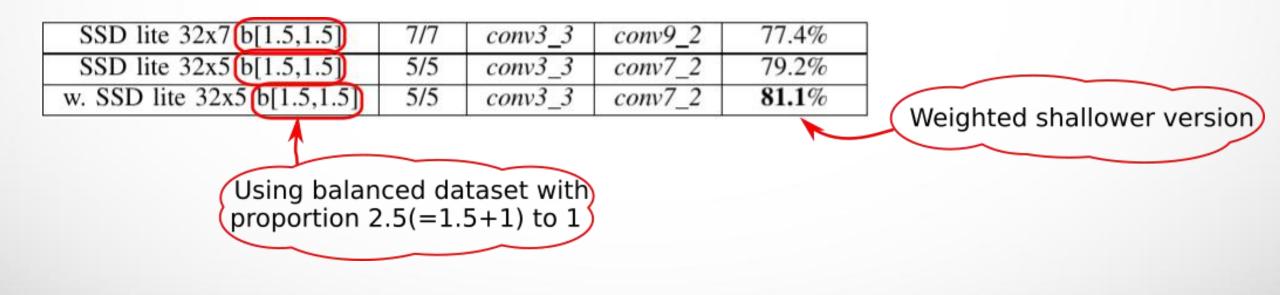
-	SSD lite 48x6	6/6	conv4_3	conv9_2	23.2%	Original layers
-	SSD lite 48x7	7/7	conv3_3	conv9_2	75.0%	
	SSD lite 48x7 b[1,1]	7/7	conv3_3	conv9_2	81.1%	underperformed
	SSD lite 48x7 b[1.5,1.5]	7/7	conv3_3	conv9_2	81.6%	
	SSD lite 48x7 b[1.5,1.5]	7/6	conv3_3	conv8_2	81.6%	Balancing dataset
	SSD lite 48x7 b[1.5,1.5]	7/5	conv3_3	conv7_2	81.6%	helps to a point
	SSD lite 48x7 b[2,2]	7/7	conv3_3	conv9_2	80.8%	
	SSD lite 48x5 b[1.5,1.5]	5/5	conv3_3	conv7_2	82.0%	
	w. SSD lite 48x5 b[1.5,1.5]	5/5	conv3_3	conv7_2	84.0%	
			•			🖌 Weighted shallower vers

Results on KITTI dataset 3/4

Lighter model adaptations:

Using a balanced dataset.

Weighted version of shallower SSDx5 demonstrated best performance at 81.1% mAP.



Results on KITTI dataset 4/4

Lightweight model performance on KITTI:

> Our medium model (SSDx5) demonstrated best performance.

Model name	Num Decision Layers	mAP
w. SSD lite 48x5 b[1.5, 1.5]	5	84.0%
w. SSD lite 32x5 b[1.5, 1.5]	5	81.1%
SqueezeDet+	1	80.4%
Tiny-DSOD	6	77.0%

Efficiency results

Efficiency comparison with other **lightweight models**:

Reported times are **indicative** due to hardware differences

Model name	Resolution	batch size	fps	GPU			
Full SSDx6	300x300	1	44	GTX 1070 Ti 8GB			
SSD lite 48x4	300x300	1	59	GTX 1070 Ti 8GB			
SSD lite 32x4	300x300	1	90	GTX 1070 Ti 8GB			
Pelee	304x304	1	77	TX2 (32FP)*			
Tiny-DSOD	300x300	1	105	TitanX			
MobileNet-SSD	300x300	1	59.3	TitanX			
Full SSDx5	620x300	1	29	GTX 1070 Ti 8GB			
SSD lite 48x5	620x300	1	51	GTX 1070 Ti 8GB			
SSD lite 32x5	620x300	1	61	GTX 1070 Ti 8GB			
SqueezeDet+	1242x375	1	32.1	TitanX			
Tiny-DSOD	1200x300	1	64.9	TitanX			
* excluding post processing time							

CONCLUSION

- Light-weight versions of the SSD architecture were examined.
- □ Two widely used datasets were utilized: Pascal Voc & KITTI.
- SSD remains competitive even when many of the original filters were removed.
- □ Decision layer selection affected significantly the performance especially on lighter versions.
- Effectiveness drop counter-measures proved useful:
 - □ Class weights manipulation played an important role.
 - □ A balanced dataset also improved performance (only in KITTI).

CONCLUSION

Thank you.Any questions?

This work was supported by ROBORDER and ARESIBO projects funded by the European Commission under grant agreements No 740593 and No 833805 respectively.