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Person Re-ldentification

Given a dataset of N persons

Drr = {Ix, Vi }R=1

Where I, and y,, are the person image and ID of the k" person in the dataset.

For a given pair of person images {Il-, Ij}, the task of re-identification is to

compute weather
= c2

Vi =Yjoryi #Y;




Problems and Contributions

oldentities mismatching.

We proposed multi classifiers training to learn the most discriminative features
with multiple classifiers instead of single classifier.

oNon-Local Dependencies.

Introduction of Self Attention (SA) module in the baseline network to make it rely
on non-local similarities instead of local mechanism of convolution filters.

Introduction of Channel Attention (CA) module for learning sharp and
discriminative features for better matching.




Methodolog

oMulti Branch (classifier) Training g
o Using multiple classifiers layers instead =
of single layer.

oSelf Attention (SA) Module.
o Features are passed through SA module

to apply self attention.
o Performs better on small spatial size of
features. Non-Local

Dependencies

oChannel Attention (CA) Module. Features

o At every residual connection CA module is applied
to increase discriminability of learned features.
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Proposed Network
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Self and Channel Attention
Mechanism
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Experiments

Datasets:
> Market1501
> The dataset consists of images from 6 cameras
° 12936 images in training set with 751 identities
> 19281 images in testing set with 750 identities (3368 queries)

°c DukeMTMC-relD
> The dataset consists of images from 8 cameras
° 16522 images in training set with 702 identities
> 17661 images in testing set with 702 identities (2228 queries)




Experiments

o Comparisons to the state-of-the-art re-id methods on Market-1501. The top 1 and 2 results are in

Market-1501
red and blue. Methods Reference Rank-1(%) | Rank-3(%) | AP

SpindleNet [12] CVPR17 76.9 91.5 -
Part-Aligned [13] ICCV17 81.0 92.0 63.4

HydraPlus-Net [16] ICCV17 76.9 91.3 -
LSRO [10] ICCV17 84.0 - 66.1
SVDNet [37] ICCV17 82.3 92.3 62.1
DPFL [38] ICCV17 88.9 923 73.1
PSE [39] CVPRIZ 87.7 94.5 69.0
HA-CNN [18] CVPRI1RB 91.2 - 755
AACN [17] CVPRI1B 85.9 - 66.9
MLEN [40] CVPRIB 90.0 - 74.3
DuATM [41] CVPRI18 914 97.1 76.6
DKP [42] CVPRIB 90.1 96.7 753
GCSL [43] CVPRI18 093.5 - 81.6
PCB [14] ECCVI18 923 972 77.4
OGSL [44] ICPR18 87.1 - 70.2
PRFF [45] ICPR18 86.3 948 69.4
IDCL [9] CVPRWI19 93.1 - 78.9
PyrNet [6] CVPRWI19 93.6 08.2 81.7
CASN(IDE) [19] CVPRI19 92.0 - 78.0
SFT [46] ICCV19 93.4 97.4 82.7

- SCAN(ID) | - | 041 | 977 | 821 |

SCAN(ID+Tr1) - 042 97.8 83.6




Experiments

o Comparisons to the state-of-the-art re-id methods on DukeMTMC-RelD. The top 1 and 2 results

i DukeMTMC-reid
are in red and blue. Methods Reference \—p b 70%) | Rank-5(%) | mAP(%)
Verf-ldentf [47] | TOMMIS 68.9 193
LSRO [10] ICCV17 67.7 ; 47.1
SVDNet [37] ICCV17 76.7 86.4 56.8
DPFL [38] ICCV17 73.2 i 60.6
PSE [39] CVPRIS 79.8 89.7 62.0
HA-CNN [18] | CVPRIS 80.5 ; 63.8
AACN [17] CVPRIS 76.8 - 59.2
MLEN [40] CVPRIS 81.0 ; 62.8
DuATM [41] CVPRIS 81.8 90.2 68.6
DKP [42] CVPRIS 80.3 89.5 63.2
GCSL [43] CVPRIS 84.9 ; 69.5
PCB [14] ECCVI18 81.8 ; 66.1
OGSL [44] ICPR1S 76.3 ; 63.7
PREF [45] ICPR1S 72.1 83.8 53.4
IDCL [9] CVPRW19 83.9 i 68.2
CASN(IDE) [19] | CVPR19 84.5 ; 67.0
| SCAN(ID) | - - T 849 | 920 | 692 |
SCAN(ID+Tri) ; 85.3 92.7 71.0




Component Analysis

o Multi Classifier training. Netwarks Components Market Duke
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Limitations

oHigh memory usage due to splitting of features and extra operations.

oMlissing cross feature similarities.

oRed arrows for features at different levels.
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Conclusion

o With multiple classifiers and losses, proposed network learns robust global features at
the added convolutional layers.

oTo capture the non-local dependencies, we introduced self-attention(SA) module to
enhance the similarity learning.

oTo learn the salient and sharp features from degraded person re-identification data, the
Channel-Attention (CA) module is introduced in the network.

oThe proposed SCAN model learns the most discriminative, sharp and salient features
for feature matching.
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