Feature-Dependent Cross-Connections in Multi-Path Neural Networks

Dumindu Tissera**, Kasun Vithanage**, Rukshan Wijesinghe**, Kumara Kahatapitiya*, Subha Fernando** and Ranga Rodrigo*

*University of Moratuwa

†CODEGEN QBITS Lab

Sri Lanka
Rich Layer-wise Feature Extraction by Multi-paths

- Neural network deepening is well established
- Powerful feature extraction within layers?
- Conventional Widening \rightarrow Parallel computations in a layer
- No context-dependent allocation of resources in a layer

- Image context is distributed along the depth of NN
- In a multi-path network, the nature of resource allocation may change with the depth
- It is intuitive to learn the resource allocation separately, layer-wise.

a) Hummingbird b) Hummingbird c) Electric Eel
Feature-Dependent Cross-Connections

- Given layer, group homogenous feature maps to parallel paths
- Route the input, layer-wise, end-to-end through such paths
- $X \rightarrow$ Global Average Pooling \rightarrow non-linear computation \rightarrow gates for X
- Cross-weight the connections and add to output Y
Image Recognition Domain

- ResNet-X → ResNet with X paths and cross-connections
- Our multi-path nets surpass
 - Conventional widening
 - Existing adaptive feature extraction methods
 - Deeper networks
- With similar or less complexity
Routing Visualization

- Input-output activation strengths (red intensities)
- Gate strengths (blue intensities and connection thickness)
- White boxes show the layer stack where no cross-connections are inserted
- Slightly different soft dynamic routing can be observed
Gating Patterns

Img a

Maximized for b and c

Shallow Gate

Maximally activated images

Img b

Maximized for a and b

Deeper Gate

Synthesized image to maximize gate

Img c
Gate Histograms of Parallel Paths

- A single layer (one graph) consists of two histograms (two paths)
- Thanks to the adaptive cross-connection based routing, the parallel computations learn distinct features.
Thank You

More Info:
Join our Q&A Session or,
email: dumindutissera@gmail.com