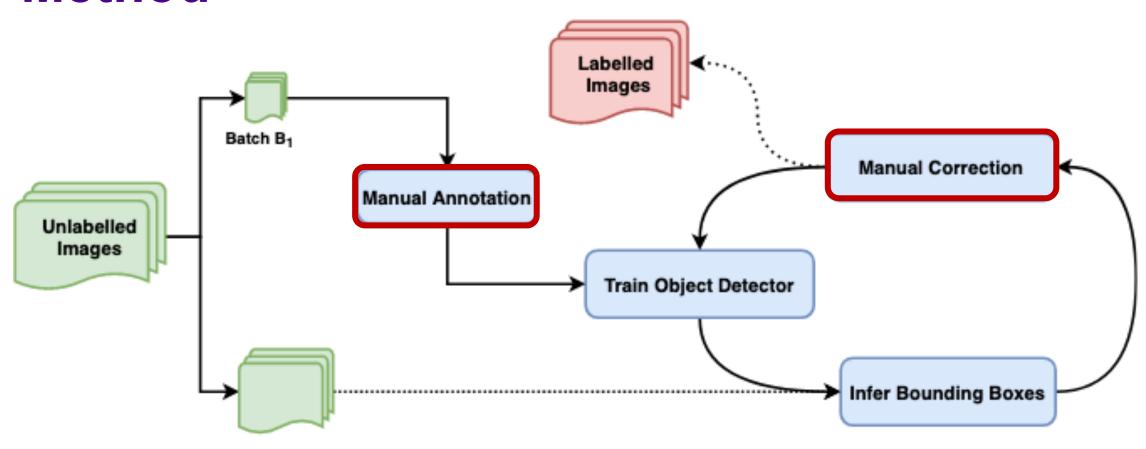


Iterative Bounding Box Annotation for Object Detection

Bishwo Adhikari & Heikki Huttunen

Background

- Supervised object detection requires large amount of labelled data for training.
- Even though many fully labelled dataset is already available, for robust detection some amount of labelled data is required from the test environment.
- Labelling object class and location in image dataset is tedious, error prone and time consuming.



Our approach

- We present an iterative train-annotate approach for the bounding box annotation.
- Our method uses freshly trained detector to propose labels for a batch of unlabeled images leaving the annotator inspection and correction work.

Method

Batches B2 ... BM+1

Method

Algorithm 1: Iterative annotation

Require: Set of unlabeled images split to M+1 distinct annotation batches B_0, \ldots, B_{M+1}

- 1: annotate images in batch B_0 manually
- 2: train object detection model with images from B_0
- 3: **for** $i \in {1, 2, ..., M}$ **do**
- 4: propose annotations for batch B_i using the current prediction model
- 5: do manual correction for the proposals
- 6: fine-tune the object detection model with batch B_i
- 7: end for

return fully labeled dataset

Experiments

- Datasets: Indoor, Pascal VOC 2012 and OpenImages V4 person class
- Networks: SSD MobileNet and Faster RCNN with MSCOCO pre-trained weight
- Sampling strategies:
 - Shuffle Random shuffle
 - Sorted Based on the object density
 - Original Based on the temporal order (Indoor)/file name (VOC & OpenImages)

Results

Table 1: Annotation workload reduction (%) in 3 datasets

Network - Approach	Indoor	PASCAL VOC	OpenImages Person		
RCNN - Shuffled	75.86 56.97 35.78	18.40	45.62		
RCNN - Sorted		20.93	60.05		
RCNN - Original		25.23	45.73		
SSD - Shuffled	47.38 31.58 19.24	3.46	20.28		
SSD - Sorted		5.66	35.13		
SSD - Original		7.97	20.04		

Results

Table 1: Annotation workload reduction (%) in 3 datasets

Network - Approach	Indoor	PASCAL VOC	OpenImages Person		
RCNN - Shuffled	75.86 56.97 35.78	18.40	45.62		
RCNN - Sorted		20.93	60.05		
RCNN - Original		25.23	45.73		
SSD - Shuffled	47.38 31.58 19.24	3.46	20.28		
SSD - Sorted		5.66	35.13		
SSD - Original		7.97	20.04		

Table 2: Annotation workload reduction (%) in Pascal VOC single class

	Airplane	Bird	Boat	Bottle	Car	Cat	Chair	Dog	Person	Plant	Average
RCNN - Shuffled	56.14	50.30	35.70	44.49	51.96	55.34	29.31	57.87	44.61	38.72	46.44
RCNN - Sorted	62.07	60.43	35.65	46.68	56.27	59.53	32.44	63.28	61.24	32.75	51.03
RCNN - Original	53.87	50.41	32.50	41.54	55.14	61.58	29.30	61.38	57.16	34.64	47.75

Results

Table 1: Annotation workload reduction (%) in 3 datasets

Network - Approach	Indoor	PASCAL VOC	OpenImages Person		
RCNN - Shuffled	75.86 56.97 35.78	18.40	45.62		
RCNN - Sorted		20.93	60.05		
RCNN - Original		25.23	45.73		
SSD - Shuffled	47.38 31.58 19.24	3.46	20.28		
SSD - Sorted		5.66	35.13		
SSD - Original		7.97	20.04		

Table 3: Workload reduction in Indoor dataset with two-stage method [1] & ours

Approach	Reduction (%)					
Two-stage (5%) [1]	79.47					
Two-stage (6%) [1]	81.21					
Two-stage (8%) [1]	78.68					
Two-stage (10%) [1]	79.03					
Two-stage (20%) [1]	72.46					
Ours (iterative)	79.56					
Ours (cumulative)	80.56					

Table 2: Annotation workload reduction (%) in Pascal VOC single class

	Airplane	Bird	Boat	Bottle	Car	Cat	Chair	Dog	Person	Plant	Average
RCNN - Shuffled RCNN - Sorted RCNN - Original	56.14 62.07 53.87	60.43	35.65	44.49 46.68 41.54	56.27	59.53	32.44	63.28	61.24	38.72 32.75 34.64	51.03

Conclusion

- We present iterative train-annotate approach for the bounding box annotation.
- It is annotator friendly. Single annotator can efficiently create environment specific object detection dataset.
- This method is effective for annotation campaign and it could save up to 75% of manual annotation workload.
- Active learning approach could be useful for the selection of images to be labelled.

Contact us

Bishwo Adhikari bishwo.adhikari tuni.fi

