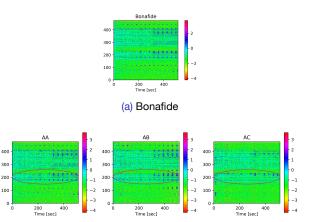
Mitigating Data Discrepancy in Replay Attack Detection

Presenter: Yongqiang Dou

Dynamically Mitigating Data Discrepancy with Balanced Focal Loss for Replay Attack Detection

Yongqiang Dou, Haocheng Yang, Maolin Yang, Yanyan Xu, Dengfeng Ke

December 2020

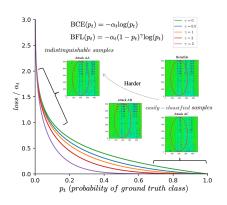


Dynamically Mitigating Data Discrepancy with Balanced Focal Loss for Replay Attack Detection

- 1 Motivation
- 2 Challenges & Solutions
- 3 Experiments
- 4 Saliency Analysis

Goal: Speaker Verification and Voice Anti-spoofing

Bonafide vs. Spoofed speech utterances feature visualization.



(b) Spoofed utterances with attack type AA, AB, and AC.

- 1 Motivation
- 2 Challenges & Solutions
- 3 Experiments
- 4 Saliency Analysis

Challenges & Solutions

- Data discrepancy between training and inference.
 - ⇒ Scalable objective for different samples.
- Fusion of numerous hand-designed features.
 - ⇒ Choose informative ones.
- Unexpected performance for real data.
 - ⇒ Generalization. Need more effort.

Dynamically Mitigating Data Discrepancy with Balanced Focal Loss for Replay Attack Detection

- **Experiments**

Experiments

Experiments

Table: Overall Performance of top systems in ASVspoof2019 Challenge.

Method	System	# Models	PA Dev Set		PA Eval Set	
			t-DCF ^{min} norm	EER(%)	t-DCF ^{min} _{norm}	EER(%)
Official Baseline	LFCC+GMM	_a	0.2554	11.96	0.3017	13.54
	CQCC+GMM	-	0.1953	9.87	0.2454	11.04
DKU(2019)	Fusion System	6	0.0064	0.24	0.0168	0.66
JHU:ASSERT(2019)	Fusion System	5	0.0030	0.13	0.0160	0.59
This work	BCE + Mean Fusion	3	0.0092	0.40	0.0153	0.62
	BCE + LR Fusion	3	0.0084	0.37	0.0151	0.61
	BFL + Mean Fusion	3	0.0075	0.35	0.0127	0.56
	BFL + LR Fusion	3	0.0077	0.35	0.0124	0.55

^a The official baseline adopts conventional methods and therefore does not participate in the comparison of the number of neural networks used for model ensemble.

Dynamically Mitigating Data Discrepancy with Balanced Focal Loss for Replay Attack Detection

- 1 Motivation
- 2 Challenges & Solutions
- 3 Experiments
- 4 Saliency Analysis

Saliency Analysis

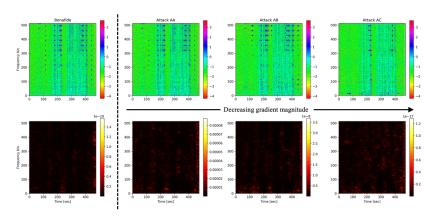


Figure: Visualization of original features (Top) vs. saliency maps (Bottom)

