

Robust Visual Object Tracking with Two-Stream Residual Convolutional Networks

Ning Zhang¹, Jingen Liu¹, Ke Wang², Dan Zeng³, Tao Mei¹

- 1. JD AI Research, Mountain View, Beijing
- 2. Migu Culture & Technology, Beijing
- 3. Shanghai University, Shanghai

Paper ID:1155

Outline

01

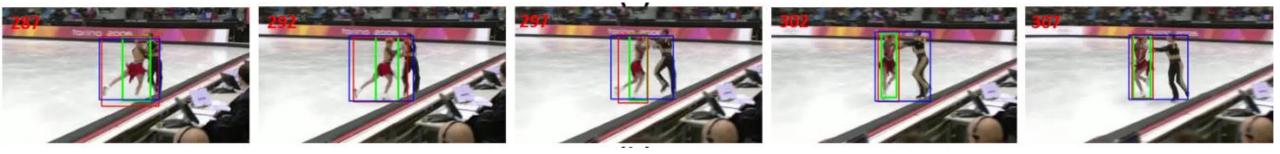
VOT Introduction

Visual Object Tracking Task, challenge and algorithm criteria

02 Related Work VOT History, Baseline approach

Proposed System

Two-Stream Residual Convolutional Network (TS -RCN)


Experiment and Result, Conclusion

Results, Ablation, Discussion, Video demo and Conclusion

VOT Introduction

Challenge and Criteria

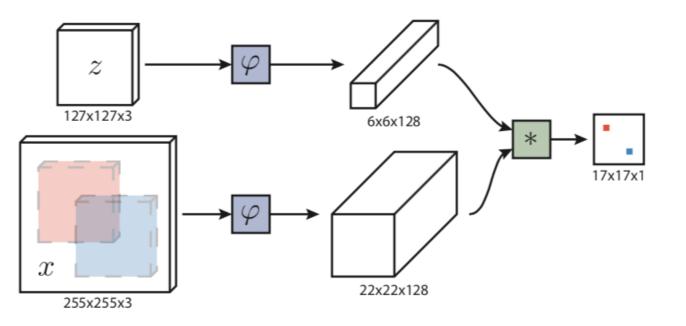
• Challenges:

complex object motion/shape, nonrigid nature of the objects, background noise, partial and full object occlusion, illumination, real-time process

• Criteria:

- robustness: not affected by occlusion, noise, illumination, motion, deformation, blurring, etc.

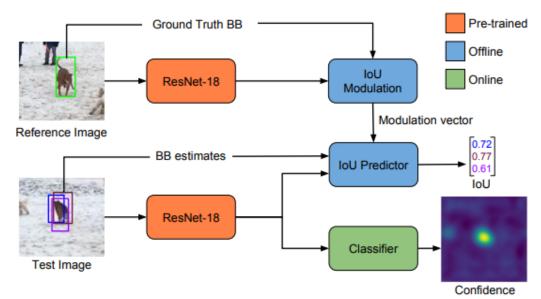
- accuracy: accurate capture of the bounding box target object.
- tracking is a real-time task.


Yilmaz, Alper, Omar Javed, and Mubarak Shah. "Object tracking: A survey." Acm computing surveys (CSUR) 38.4 (2006): 13-es.

VOT Related Work

A brief history of VOT

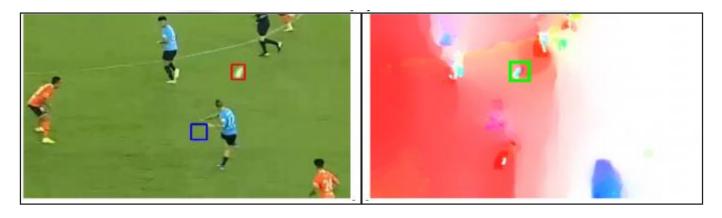
- Previously (before 2016), mostly <u>online</u>, filter-based process, not much deep learning.
- Tracking can be viewed as a similarity match, and can be learned off-line.
- SiamFC
 - Large-training SiamFC is the first to use 2015 ILSVRC Object detection from video task (VID), VID has 4417 videos, over 2 Million Annotation


[1] Bertinetto, Luca, et al. "Fully-convolutional siamese networks for object tracking." ECCV2016

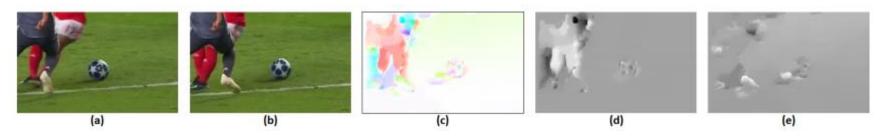
VOT Related Work

DiMP Tracker, a strong baseline

- Siamese Limitation:
 - Siamese offline discard the background appearance,
 - training set low distinction between object and distractor
- Solution:
 - Propose a prediction-model for classification, end-to-end offline training
 - Online fine-tune offline classification
- Tracking Speed: FPS 40


[1] Bhat, Goutam, et al. "Learning discriminative model prediction for tracking." ICCV 2019.

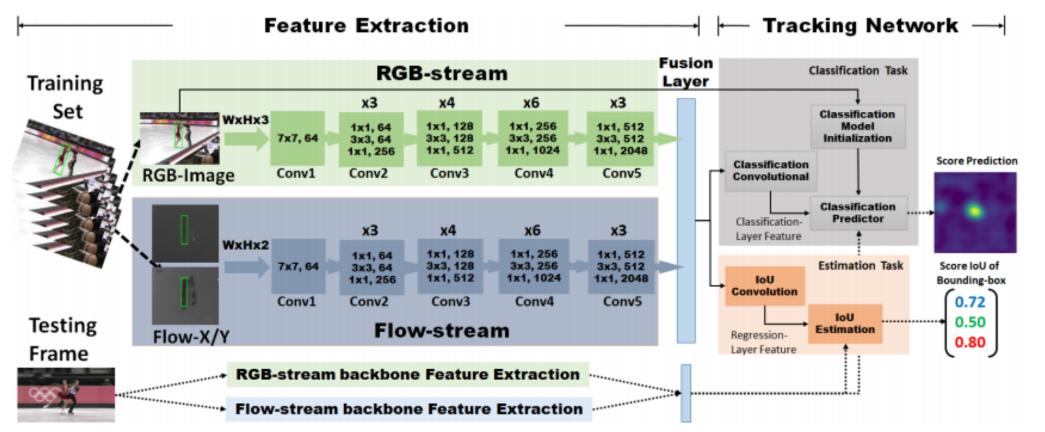
Proposed System: Motivation



Optical fow approach

• Motivation: deformed object, motion blur fails the appearance-based tracker

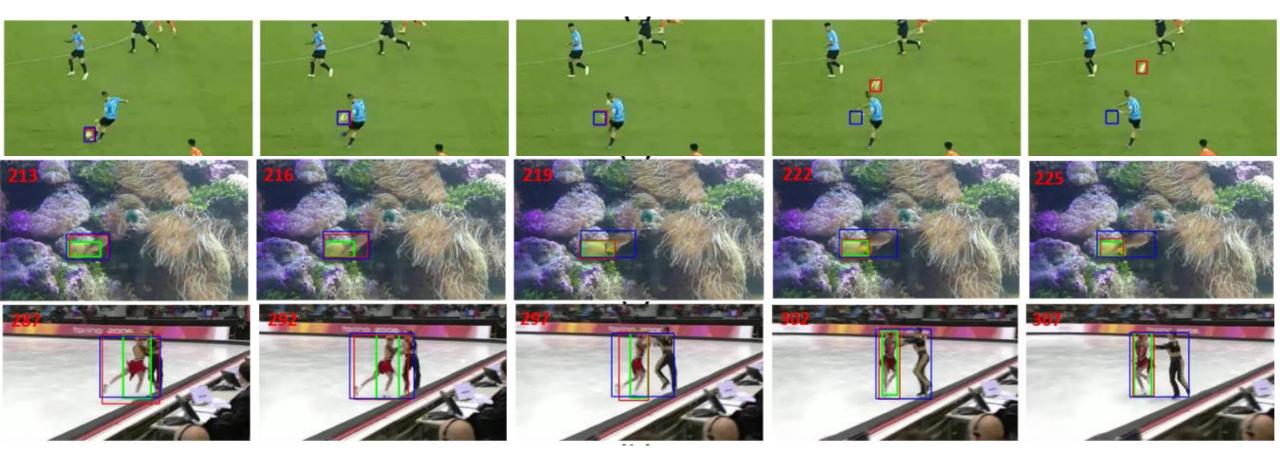
Intuitive solution


Optical flow visualization: (a-b) consecutive video frames of a targeted soccer ball. (c): Color visualization based on displacement vector's magnitude and direction, using the HSV color-space. (d-e): horizontal and vertical displacement vector fields d_u^t , and d_v^t , respectively, with higher intensity representing positive values.

Proposed System: TS-RCN

Two-stream architecture: appearance + motion (TS-RCN)

- Motivation: Solution: two-stream residual convolutional networks (TS-RCN)
 - End-to-end trainable Two-stream Optical-flow + Appearance
 - Based on residual network backbones
 - Up to speed 38FPS



Experiment and Result

Two-stream: appearance + motion (TS-RCN)

	LADCF	MFT	SiamRPN	DRT	RCO	UPDT	ECO	SiamFC	ATOM	SiamFC++	DaSiamRPN	SiamMask	SiamRPN++	DIMP-50	TS-RCN
	[34]	[35]	[18]	[36]	[12]	[37]	[38]	[4]	[3]	[17]	[39]	[40]	[16]	[5]	ours
EAO ↑	0.389	0.385	0.383	0.356	0.376	0.378	0.280	0.187	0.401	0.426	0.326	0.387	0.414	0.422	0.459
Accuracy ↑	0.505	0.508	0.587	0.519	0.507	0.536	0.487	0.505	0.590	0.587	0.569	0.642	0.600	0.602	0.579
Robustness \downarrow	0.159	0.140	0.276	0.201	0.155	0.184	0.276	0.585	0.204	0.183	0.337	0.295	0.234	0.162	0.139

Experiment

Ablation study

• Backbone Depth: residual network-18, -50, -101, -152

ResNet Depth	18	50	101	152
EAO ↑	0.345	0.419	0.383	0.233
Params (millions)	11.69	25.56	44.56	60.19

Backbone Architecture: ResNet, ResNeXt, WRNs

	TS-RCN ResNet-50	TS-RCN ResNeXt-50	TS-RCN WRNs-50
EAO ↑	0.419	0.459	0.390
Accuracy ↑	0.571	0.579	0.568
Robustness \downarrow	0.168	0.139	0.195

• Training Datasets: GOT-10K, LaSOT, ImgNetVid

DBs	GOT-10k	GOT-10k + LaSOT	GOT-10k + LaSOT + ImgNetVid
EAO ↑	0.383	0.459	0.378

Video Demo

Video demo 1: confused background, occlusion, and deformed object

Video Demo

Video demo 2: sudden motion change, occlusion, deformed object

Conclusion

- TS-RCN strategically combines the RGB appearance and the optical flow motion inputs.
- TS-RCN exploits a "wider" residual network ResNeXt as its feature extraction back bone to further improve the tracking performance.
- TS-RCN was evaluated at benchmark datasets with better performance,

• including: VOT2018, VOT2019, and GOT-10K.

• We have successfully demonstrated that our two-stream model can outperform the appearance-based tracker with real-time FPS.

