

Abstract

Objective:

Robust calving detection of cows using video frames for farmers' decision making.

Approach:

System incorporates farmers' decision-making processes into the network.

✓ Robustness on a small data

✓ Interpretability of reasons for predictions

Assisting cows during calving is important for preventing **fatal accidents**.

End-to-End system

Simple approach that does not require domain knowledge.

- 1. Large and well-organized data are necessary.
- 2. Low interpretability (called **Black-box** system)

Proposed system incorporates **farmers' decision-making processes** into the network.

Proposed system Calving-relevant

Proposed system

Proposed system

1st step: Frame-wise feature extraction

Posture-based feature: Hidden layer outputs for posture classification tasks (128dim) **Rotation-based feature:** Heatmap of the neck and tail position estimation tasks (3*3, 2ch) **Movement-based feature:** Cows' region coordinates detected by YOLO v3 (2dim)

2nd step: Time-series feature extraction

Posture Rotation Movement Heatmap of neck and tail position Cows' region coordinates Hidden layer outputs Changes in neck and tail position **Posture frequency information Difference in coordinates** (Pooling vector) (M-measure vector) $[\Delta x, \Delta y]$ Posture frequency Rotation amount Movement pattern

Frame-wise

features

Tail raising

Switching between standing & lying postures

Increase in # of rotations

Increase in aimless walking time

Experiment

Comparison of detection performance with and without explicit feature extraction about calving signs.

Data:

• 15 calving scenes recorded in Kagoshima, Japan

Systems to compare:

- E2E (End-to-End system <u>without explicit feature extraction about caving signs</u>)
 - Architecture is the same as SS-posture, with frame-wise features derived from ImageNet-trained ResNet-50.
- SS {posture, rotation, movement} (proposed)

Evaluation metrics:

• AUC, F1-score, Precision, Recall

Results

Evaluation on test data

System	AUC	F1-score	Precision	Recall
E2E	0.82	0.73	0.71	0.76
SS - Posture	0.88	0.79	0.77	0.80
SS - Rotation	0.84	0.74	0.80	0.70
SS - Movement	0.86	0.78	0.79	0.76

Results

Evaluation on test data

System	AUC	F1-score	Precision	Recall
E2E	0.82	0.73	0.71	0.76
SS - Posture	0.88	0.79	0.77	0.80
SS - Rotation	0.84	0.74	0.80	0.70
SS - Movement	0.86	0.78	0.79	0.76

[✓] Performance of proposed systems was better over E2E system

Results

Evaluation on test data

System	AUC	F1-score	Precision	Recall
E2E	0.82	0.73	0.71	0.76
SS - Posture	0.88	0.79	0.77	0.80
SS - Rotation	0.84	0.74	0.80	0.70
SS - Movement	0.86	0.78	0.79	0.76

X E2E system detected calving signs frequently in a normal state.

Summary

Objective:

Robust calving detection of cows using video frames for farmers' decision making.

Approach:

System incorporates farmers' decision-making processes into the network.

- ✓ Robustness on a small data
- ✓ Interpretability of reasons for predictions

Calving-relevant Feature Extractor Pre-calving? Yes No Calving-relevant features Pre-calving? Yes No Calving-relevant features Pro-calving?

Results:

Outperformed the E2E system on a small data.

With explicit feature extraction, the proposed systems suppress obvious false positives.