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Overview N i

= Overwhelming burden on computation of deeper
neural networks

= Dynamic inference mechanism

= Change the inference path for different samples at
runtime

= Existing methods only reduce the depth by skipping
an entire specific layer

= Dynamic Multi-path Neural Network

= Provide more topology choices in terms of both
width and depth



Outline N i

=Introduction
=Proposed Approach
«Experiments



Introduction N Eim

= Dynamic inference mechanism
= Elegant solution to lightweight deployment
= Prevalent dynamic inference techniques are mostly layer-wise

«We aim to improve the conventional dynamic inference
scheme in terms of both network width and depth.

= Challengings: efficiency and effectiveness
= Block split
= Gate controller

= Experimental results demonstrate the superiority of our
method.



Overview of DMNN , N il

Different from altering on depth by skipping an entire
specific layer, DMNN alters on both width and depth.



Block Subdivision ‘ N i

. Efficiency: impractical to control each channel
= Procedure

= Divide the origin block of the network into several
sub-blocks

=« Each sub-block has its switch to decide whether to
execute or not
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Design of Controller ‘ N i

= Overview of gate controller - Design

« Predict the status of each sub- =« Previous state information
block (on/off) embedding

= Auxiliary classification task
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Experiment

= Benchmark: ImageNet

= Training setup
= Standard practice

= Performance analysis

Model Top-1 Emr. (%)  Params (10°)  FLOPs (10%)
ResNet-50 24.7 25.56 3.8
ResNet-50 + Pruning[37] 2391 27.95 3.11
ResNet-50 + Pruning[25] 24 88 25.45 3.13
ResNeXt-50[2 x 40d] 23.0 25.4 4.16
ResNeXt-50[4 x 24d] 226 25.3 4.20
ConvNet-AIG-50[t = 0.7] 23.79 + 0.21 26.56 3.12 + 0.13
S-ResNet-50[22] 24.0 25.5 4.1
DMNN-50 22,533 + 0.15 24.67 3.10 + 0.09
ResNet-101 236 4454 7.6
ResNeXt-101[2 x 40d] 21.7 44 .46 7.9
ConvNet-AIG-101[t = 0.5] 22.63 46.23 5.11
DMNN-101 21.98 + 0.11 43.12 423 + 0.10

=

sensetime



Further Analysis o N i
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Conclusion N i

« DMNN

= Provide more path selection choices in terms of network
width and depth during inference

= Experimental results
= Superior performance in terms of efficiency and accuracy

= Future work
= Apply the framework to practical systems
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Thanks && Questions ?




