

Dynamic Multi-path Neural Network

Yichao Wu

Sensetime Group Limited

Overview

- Overwhelming burden on computation of deeper neural networks
- Dynamic inference mechanism
 - Change the inference path for different samples at runtime
 - Existing methods only reduce the depth by skipping an entire specific layer
- Dynamic Multi-path Neural Network
 - Provide more topology choices in terms of both width and depth

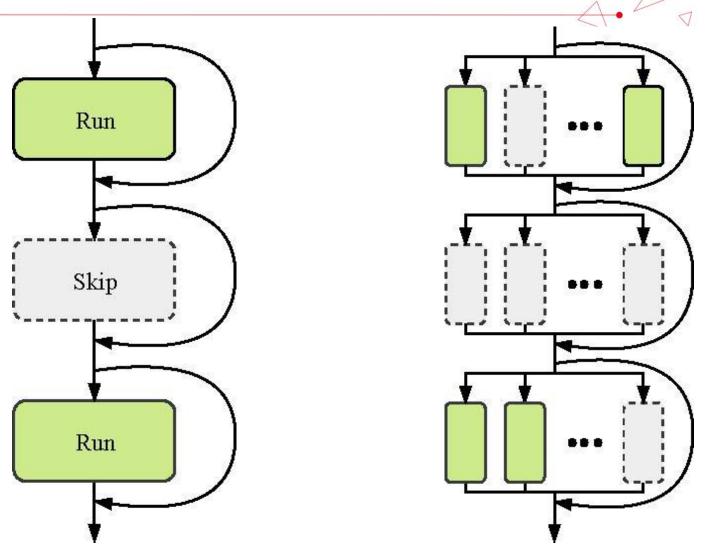
Outline

- Introduction
- Proposed Approach
- Experiments

Introduction

- Dynamic inference mechanism
 - Elegant solution to lightweight deployment
 - Prevalent dynamic inference techniques are mostly layer-wise
- We aim to improve the conventional dynamic inference scheme in terms of both network width and depth.
- Challengings: efficiency and effectiveness
 - Block split
 - Gate controller
- Experimental results demonstrate the superiority of our method.

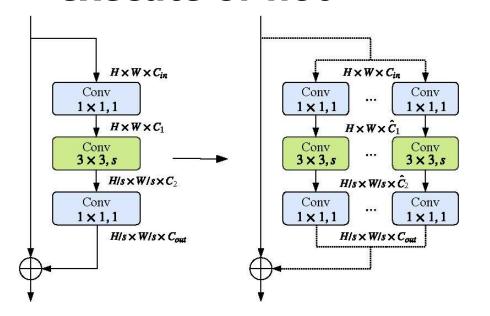
Overview of DMNN

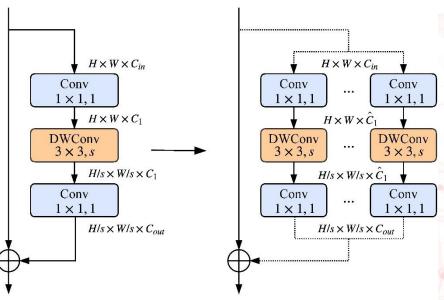


Different from altering on depth by skipping an entire specific layer, **DMNN** alters on both width and depth.

Block Subdivision

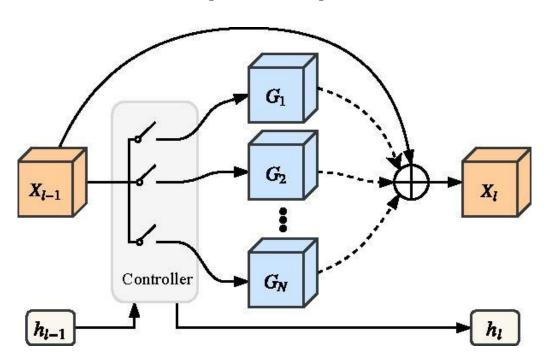
- Efficiency: impractical to control each channel
- Procedure
 - Divide the origin block of the network into several sub-blocks
 - Each sub-block has its switch to decide whether to execute or not



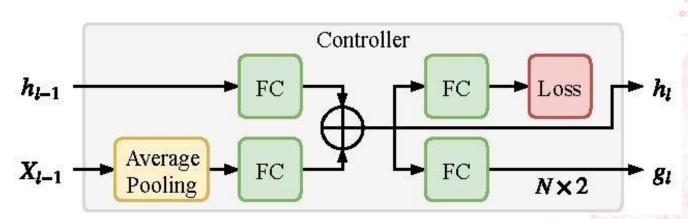


Design of Controller

- Overview of gate controller
 - Predict the status of each subblock (on/off)



- Design
 - Previous state information embedding
 - Auxiliary classification task



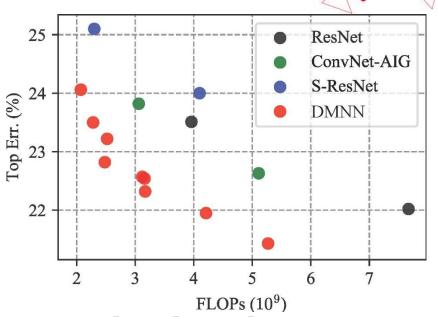
Experiment

- Benchmark: ImageNet
- Training setup
 - Standard practice
- Performance analysis

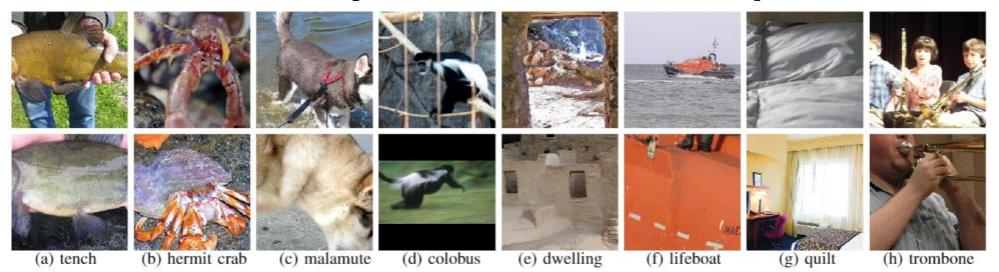
Model	Top-1 Err. (%)	Params (10 ⁶)	FLOPs (10 ⁹)
ResNet-50	24.7	25.56	3.8
ResNet-50 + Pruning[37]	23.91	27.95	3.11
ResNet-50 + Pruning[25]	24.88	25.45	3.13
ResNeXt-50[$2 \times 40d$]	23.0	25.4	4.16
ResNeXt-50[$4 \times 24d$]	22.6	25.3	4.20
ConvNet-AIG-50[$t = 0.7$]	23.79 ± 0.21	26.56	3.12 ± 0.13
S-ResNet-50[22]	24.0	25.5	4.1
DMNN-50	22.53 ± 0.15	24.67	3.10 ± 0.09
ResNet-101	23.6	44.54	7.6
ResNeXt-101[$2 \times 40d$]	21.7	44.46	7.9
ConvNet-AIG-101[$t = 0.5$]	22.63	46.23	5.11
DMNN-101	21.98 ± 0.11	43.12	4.23 ± 0.10

Further Analysis

Top-1 error vs FLOPs



Visualization of "easy" and "hard" samples



Conclusion

DMNN

- Provide more path selection choices in terms of network width and depth during inference
- Experimental results
 - Superior performance in terms of efficiency and accuracy
- Future work
 - Apply the framework to practical systems

Thanks && Questions?