Learning Neural Textual Representations for Citation Recommendation

Binh Thanh Kieu, Inigo Jauregi Unanue, Son Bao Pham, Hieu Xuan Phan, Massimo Piccardi*

*speaker; University of Technology Sydney

ICPR 2020, Milan, Italy, 10-15 January 2021
In this paper we propose an effective method for **citation recommendation**

The main components are:

- a submodular scoring function to select the citations
- a deep sequential representation for the documents using Sentence-BERT [Reimers & Gurevych EMNLP 2019]
- a fine-tuning approach based on twin and triplet networks
Citation recommendation

- **Citation recommendation** aims to recommend references for a given document out of a pool of citable documents.

- What can it be useful for? For instance, to find appropriate references for a draft you have started to write.

- While we do not do this here, it can also be heavily personalised to the user’s preferences, targeted venue etc.
Citation recommendation: the formal task

- We are given a **query document**, \(q \), and a **corpus** of citable documents, \(C = (d_1, d_2, \ldots, d_N) \), which likely form a citation graph.

- The task is to choose a subset \(\tilde{S} \subseteq C \) with \(|\tilde{S}| \leq K\) to be the **recommended citation list**.
A straightforward approach to citation recommendation could be:

- Turn the documents into some numerical representation, e.g. TF-IDF
- Compute the similarity between the query and each candidate document using some similarity function, e.g. the cosine similarity
- Recommend the top-K most similar documents

Risk? → *redundancy***!!!
Submodularity to the rescue

- When selecting the citations, one should balance **similarity to the query** and **diversity** of the recommended citations.

- A scoring function that balances these two properties is typically **submodular**.

- Finding the citation list that maximizes a submodular scoring function is **NP-hard**.
Submodularity to the rescue

• However, submodular functions enjoy a key property: selecting the citations one by one with a simple, greedy algorithm is near-optimal \(^1\)

• The greedy algorithm scans the corpus \(K\) times, every time adding a citation to the partial list based on a) the citations already selected and b) the rest of the corpus

• So, it is computationally heavier than a simple top \(K\) similarity search, but manageable in many cases

\(^1\) not so “near” \(\sim > 0.632\) of the actual maximum
• In all cases, you will need to convert your documents into a numerical representation

• Classic methods to encode a document: TF-IDF, BM-25 etc

• We instead use **Sentence-BERT** [Reimers & Gurevych EMNLP 2019]: a neural approach to embed a whole sentence/paragraph/short document into a vector using any pre-trained BERT model. It can be fine-tuned.

• A simple cosine similarity as the similarity function
Sentence-BERT fine-tuning

• We fine-tune Sentence-BERT in a supervised manner
• Annotated training set: the documents and their citations in the corpus (the citation graph)
• Distance between any two documents in the citation graph, \(\text{dis}(d_i, d_j) \): number of nodes in the shortest path from node \(i \) to node \(j \)
• Positive examples for query \(d_i \): all \(d_j \)s with \(\text{dis}(d_i, d_j) \leq 3 \)
• Negative examples: all the others. To limit the training time, we only use subsets of the negative examples, selected with three different strategies: Random, Nearest (to the query in similarity) and Farthest
Fine-tuning objectives

- **Twin aka “Siamese” network-style**: given a query document, q, and a positive or negative candidate, d, we minimize the mean squared difference between their predicted and target similarities.

- **Triplet network-style**: given the query, q, a positive candidate, d^+ and a negative candidate, d^-, we impose that the predicted similarity $s(q, d^+)$ be larger than $s(q, d^-)$ by a margin:

$$\text{triplet loss} = \max[s(q, d^-) - s(q, d^+) + 1, 0] \quad (1)$$
Experiments

- **Dataset**: *ACL Anthology Network corpus (AAN)* [1]: a dataset of 22,085 papers in the field of computational linguistics. Papers + meta-information

- We replicate the experimental setup of [2] by excluding papers with no references and using the standard training (16,128 papers from 1960 to 2010), dev/validation (1,060 papers from 2011) and test (1,161 papers from 2012) splits
Experiments

• We **fine-tune Sentence-BERT** as described (further details in the paper)

• At inference time, we use a **submodular scoring function** (details in the paper)

• **Performance evaluation**: Mean Reciprocal Rank (MRR) and F1@k score

• **Compared approaches**:
 • ElasticSearch with Okapi BM25 \(^2\)
 • Citeomatic [3]
 • Our previous submodular approach, SubRef [2]
 • The proposed method with top-K inference
 • The proposed method with submodular inference

\(^2\)https://www.elastic.co/
Main results

<table>
<thead>
<tr>
<th>Method</th>
<th>MRR</th>
<th>F1@10</th>
<th>F1@20</th>
<th>F1@50</th>
<th>F1@100</th>
</tr>
</thead>
<tbody>
<tr>
<td>ElasticSearch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM25</td>
<td>0.2437</td>
<td>0.0701</td>
<td>0.0632</td>
<td>0.0446</td>
<td>0.0321</td>
</tr>
<tr>
<td>Citeomatic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select</td>
<td>0.3085</td>
<td>0.1281</td>
<td>0.1339</td>
<td>0.0940</td>
<td>0.0548</td>
</tr>
<tr>
<td>Select+Rank</td>
<td>0.3777</td>
<td>0.1590</td>
<td>0.1472</td>
<td>0.0959</td>
<td>0.0549</td>
</tr>
<tr>
<td>SubRef (best on dev)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM25-QAIv2</td>
<td>0.3320</td>
<td>0.1310</td>
<td>0.1264</td>
<td>0.0911</td>
<td>0.0621</td>
</tr>
<tr>
<td>SBERT + top-K (best on dev)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siamese, d=2, farth.</td>
<td>0.3493</td>
<td>0.1424</td>
<td>0.1400</td>
<td>0.1096</td>
<td>0.0797</td>
</tr>
<tr>
<td>SBERT + submod (best on dev)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siamese+QAIv2</td>
<td>0.4431</td>
<td>0.1978</td>
<td>0.1839</td>
<td>0.1327</td>
<td>0.0918</td>
</tr>
</tbody>
</table>

Table: Results on the test set
Conclusions

• A novel approach to citation recommendation that leverages a deep representation of the documents

• An approach for fine-tuning Sentence-BERT with positive and negative examples derived from the citation graph

• A submodular scoring function for recommending the citations that balances their similarity to the query with their (author) diversity

• Outperformed all the compared approaches, including a state-of-the-art neural approach, Citeomatic, on the AAN dataset

Thank you very much for your attention!

Any (virtual) questions?

Please email:
binhkt.vnu@gmail.com, massimo.piccardi@uts.edu.au

Binh Thanh Kieu, Inigo Jauregi Unanue, Son Bao Pham, Hieu Xuan Phan, Massimo Piccardi

University of Technology Sydney, NSW, Australia
University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam