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Intro

Modern Astronomy is a data-intensive discipline
Astronomical data are abundant, rich and unique, but mostly unlabeled

Automated data analysis techniques, such as ML and DL, are needed to extract
useful information from these data
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Astronomical Data

Science-ready data products may come in various formats:
® raw images (may have dozens of channels)
* RGB composite images (generated from raw images)
e tabular catalogues of properties (generated from raw images)
® spectra

The core idea of our work is combining images and astronomical properties
into a single representation.
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Our self-supervised approach

Pretext (regression) task

numerical
CNN backbone properties (e.g.
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image

Downstream (classification) task
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image CNN backbone probabilities
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Classification datasets

Star/Galaxy (SG) 2 classes, 50090 images

Star/Galaxy/Quasar (SGQ) 3 classes, 54000 images
Merging Galaxies (MG) 2 classes, 15766 images
Galaxy Morphology (EF-2) 2 classes, 3604 images
Galaxy Morphology (EF-4) 4 classes, 4389 images
Galaxy Morphology, (EF-15) 15 classes, 4327 images
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Results
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Figure: Accuracy curves as a function of the number of training samples for classifiers trained
on the SG (left) and SGQ (right) datasets.
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Results
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Figure: t-SNE projections of learned representations for the SG, SGQ and MG datasets.
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Conclusions

Our method is advantageous when:
© there are few labeled examples
® ImageNet weights for the CNN architecture of interest are not available
© extracting features for unsupervised tasks, such as clustering
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Possible directions for future work are:
@ extending our analyses for raw images
® using different properties as targets for self-supervised learning
® evaluating learned representations in unsupervised tasks
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