Background

Face Anti-spoofing Based on Dynamic Color Texture Analysis Using Local Directional Number Pattern

Junwei Zhou¹ Ke Shu¹ Peng liu² Jianwen Xiang¹ Shengwu Xiong¹

¹School of Computer Science and Technology Wuhan University of Technology

²College of Information Sciences and Technology The Pennsylvania State University

ICPR, December 2020

- 1 Background
- 2 The Proposed Method
- 3 Experimental Results
- 4 Conclusions

- 1 Background
- 2 The Proposed Method
- 3 Experimental Results
- 4 Conclusions

Background

000

- Texture-based methods color LBP¹, color texture²
- Motion-based Methods
 LBP-TOP³, multi-scale BSIF-TOP and LPQ-TOP⁴
- Methods Based on Other Cues
 image quality analysis⁵, depth based CNN⁶

⁶Yousef Atoum et al. "Face anti-spoofing using patch and depth-based CNNs". In: *International Joint Conference on Biometrics* (2017), pp. 319–328.

¹Zinelabidine Boulkenafet, Jukka Komulainen, and Abdenour Hadid. "Face anti-spoofing based on color texture analysis". In: *International Conference on Image Processing* (2015), pp. 2636–2640.

²Zinelabidine Boulkenafet, Jukka Komulainen, and Abdenour Hadid. "Face spoofing detection using colour texture analysis". In: *IEEE Transactions on Information Forensics and Security* 11.8 (2016), pp. 1818–1830.

³Tiago de Freitas Pereira et al. "Face liveness detection using dynamic texture". In: EURASIP Journal on Image and Video Processing 2014.1 (2014), p. 2.

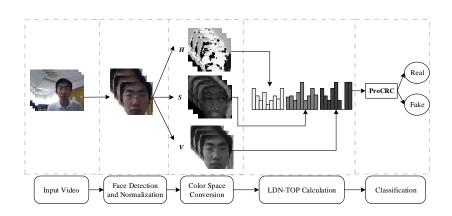
⁴Shervin Rahimzadeh Arashloo, Josef Kittler, and William Christmas. "Face spoofing detection based on multiple descriptor fusion using multiscale dynamic binarized statistical image features". In: *IEEE Transactions on Information Forensics and Security* 10.11 (2015), pp. 2396–2407.

⁵ Javier Galbally and Sébastien Marcel. "Face anti-spoofing based on general image quality assessment". In: International Conference on Pattern Recognition (2014), pp. 1173–1178.

Motivation

Background

000


- Texture is widely used in anti-spoofing methods.
- Motion is also useful for discriminating fake faces from real ones.
- Color information is also discriminative in term of face anti-spoofing.
- Local directional number pattern (LDN) has shown excellent performance on several visual tasks such as face recognition and expression recognition.
- The probabilistic collaborative representation based classifier (ProCRC) has been confirmed to be effective in term of image classification.

- 1 Background
- 2 The Proposed Method
- 3 Experimental Results
- 4 Conclusions

Face Anti-spoofing Flowchart

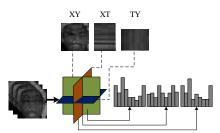
Local Directional Number Pattern

Calculate eight edge response images

$$I^k = I * M^k, \quad k = 0, 1, \dots, 7.$$
 (1)

 Select two directional numbers with the maximum and minimum edge responses

$$i^*(x,y) = \arg\max_{i} I^i(x,y), \quad i = 0, 1, \dots, 7.$$
 (2)


$$j^*(x,y) = \underset{j}{\arg\min} \, I^j(x,y), \quad j = 0, 1, \dots, 7.$$
 (3)

Calculate LDN code

$$LDN(x,y) = 8 \times i^*(x,y) + j^*(x,y). \tag{4}$$

Extention to LDN-TOP

Final color LDN-TOP feature vector

$$F = [f_1, \cdots, f_i, \cdots, f_L]$$
 (5)

■ LDN-TOP feature vector of i - th color channel

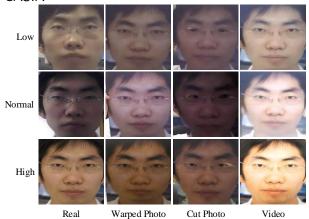
$$f_i = [H_i^{XY}, H_i^{XT}, H_i^{TY}] \tag{6}$$

■ LDN feature vector of each plane

$$H^{plane} = \prod_{j=1}^{N} \prod_{k=1}^{n} h_{j,k}$$
 (7)

ProCRC Classifier

Objective function


$$\arg\min_{\alpha} (\lambda \|\alpha\|_{2}^{2} + \|y - X\alpha\|_{2}^{2} + \gamma \sum_{k=1}^{K} \|X\alpha - X_{k}\alpha_{k}\|_{2}^{2})$$
 (8)

- 1 Background
- 2 The Proposed Method
- 3 Experimental Results
- 4 Conclusions

Datasets

CASIA

Experimental Results

Datasets

■ Replay-Attack

Datasets

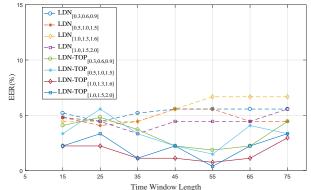
Effectiveness of different color spaces

■ Performance of single color space on CASIA

Operator	Gray		RGB		HSV		YCbCr	
	EER	AUC	EER	AUC	EER	AUC	EER	AUC
LDN-TOP _[0.3,0.6,0.9]								
LDN-TOP _[0.5,1.0,1.5]								
LDN-TOP _[1.0,1.3,1.6]	14.81	93.84	8.89	97.35	3.70	99.36	6.30	98.74
LDN-TOP _[1.0,1.5,2.0]	15.56	92.72	8.89	96.83	4.44	99.18	7.78	98.21

Performance of color space combinations on CASIA

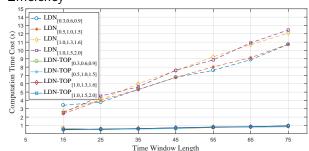
Operator	RGB+HSV		RGB+YCbCr		HSV + YCbCr	
	EER	AUC	EER	AUC	EER	AUC
LDN-TOP _[0.3,0.6,0.9]	6.67	98.10	7.78	97.72	4.81	99.40
LDN-TOP _[0.5,1.0,1.5]	5.93	98.81	7.78	98.14	5.56	99.42
LDN-TOP _[1.0,1.3,1.6]	3.33	99.47	4.44	99.24	2.22	99.76
LDN-TOP _[1.0,1.5,2.0]	3.33	99.33	5.56	99.09	3.33	99.73


Effectiveness of ProCRC

Performance of different classifiers on CASIA

Operator	SVM-HIK		SVM-Linear		ProCRC	
	EER	AUC	EER	AUC	EER	AUC
LDN-TOP _[0.3,0.6,0.9]	4.44	99.13	5.56	98.67	4.81	99.40
LDN-TOP _[0.5,1.0,1.5]	3.33	99.26	5.56	99.04	5.56	99.42
LDN-TOP _[1.0,1.3,1.6]	2.59	99.27	4.44	99.35	2.22	99.76
LDN-TOP _[1.0,1.5,2.0]	2.22	99.34	4.44	99.34	3.33	99.73

Comparison between LDN and LDN-TOP


Evaluation of Time Window Length

Comparison between LDN and LDN-TOP

Efficiency

Comparison with the state of the arts

■ Performance comparison on CASIA and Replay-Attack

Method		CASIA EER	
			HTER
SS	CASIA Baseline [11]	17	_
Ĭ,	LBP-TOP [5]	10	7.6
Hand-Crafted Features	Color Texture Markov [16]	8	4.4
Ξ.	MBSIF-TOP + MLPQ-TOP [6]	7.2	1.0
Ę	CVLBC [7]	6.48	0.75
ra	Colour LBP [15]	6.2	2.9
욌	Scale Space Texture [14]	4.2	3.1
ğ	Colour Texture [3]	3.2	3.5
Ħ	Guided Scale Texture [25]	2.53	3.13
b 0	CNN-Stacking [26]	6.7	0.38
ij.	Attention CNN [27]	3.145	0
틾	Patch & Depth based CNN [20]	2.67	0.72
<u> </u>	LBP Network [28]	2.5	1.3
Deep Learning	Deep LBP [29]	2.3	0.9
	3D Virtual Synthesis [30]	2.22	0.63
	3D CNN [31]	1.4	1.2
	Ours	0.37	3.13

Comparison with the state of the arts

Performance comparison on UVAD

Method		UVAD	
Method	FAR	FRR	HTER
Visual Codebooks [17]	44.73	15.00	29.87
Visual Rhythm [12]	44.52	11.67	28.09
FFT + LDP-TOP [32]	7.38	40.00	23.69
IQA [33]	36.80	9.20	23.00
DDGL [9]	-	_	16.50
Ours	3.33	8.13	5.73

Comparison with the state of the arts

Cross-database performance comparison

	Method	$C \to R^1$	$\textbf{R} \rightarrow \textbf{C}^2$	Average
SS	LBP-TOP [5]	49.7	60.6	55.2
Features	Guided Scale Texture [25]	48.4	40.3	44.4
eat	Color LBP [15]	47.0	39.6	43.3
H	Visual Codebooks [17]	34.4	50.0	42.2
Hand-Crafted	CLNF [36]	33.7	49.3	41.5
La	Videolet [37]	35.4	44.6	40.0
$\frac{1}{2}$	Color Texture Markov [16]	32.3	45.9	39.1
ä	IQA [33]	38.1	39.0	38.6
Ξ	Colour Texture [3]	30.3	37.7	34.0
20	Noise Modeling [38]	28.5	41.1	34.8
· 🖥	Attention CNN [27]	30.0	33.4	31.7
Deep Learning	CNN-Stacking [26]	20.6	40.4	30.5
	Auxiliary [21]	27.6	28.4	28.0
	GFA-CNN [39]	21.4	34.3	27.9
Á	DDGL [9]	22.8	27.4	25.1
	Ours	38.8	42.9	40.9

- 1 Background
- 2 The Proposed Method
- 3 Experimental Results
- 4 Conclusions

Conclusions

- The combination of HSV and YCbCr achieved the best results.
- The ProCRC outperformed the SVM classifiers.
- Our method achieved the best performance on CASIA with EER and UVAD with HTER. And our method also showed the competitive results on the Replay-Attack database.

Thank you!