<u>Semi-Supervised Outdoor Image Generation</u> <u>Conditioned on Weather Signals</u>

S. Kawakami, K. Okada, N. Nitta, K. Nakamura, N. Babaguchi

Osaka university

ICPR 2020

Background & Goal

- Unintuitive data to understand
- Spatio-temporal dense

- Intuitive data to understand
- Spatio-temporal sparse

Goal : Generating images which can tell weather situations at arbitrary time and locations.

Problems & Solution

Image translation needs a lot of pair outdoor images (input) and weather signals (condition) as training data.

→Collection source : SNS Posted outdoor images

Comment : Today is very Clear! Post time : YYYY/MM/DD Post place : lat, lon

Comment : It's going to rain... Post time : YYYY/MM/DD Post place : lat, lon

It is hard to synchronize outdoor images with weather signals due to the mismatch between the posted/captured time of images.

Proposed Method

STEP 3) Training of conditional outdoor image generator

Data collection result

Semi-supervised approach : A few of high-confidence pairs and a lot of outdoor images

Flicker & OpenWeatherMap

764,566 pairs

Check semantic consistency by comparing condition predicted from outdoor image and weather signals.

From the remaining data, remove outliers of weather signals and duplicate images.

• High-confidence pairs (171,489 pairs)

train : val : test = $2 : 2 : 1 \rightarrow$ For training *R*, train(**68,595** pairs)

• Low-confidence outdoor images (201,059 images) \rightarrow Augmented : For training T of semi-supervised approach

Experiment①Evaluations of semi-supervised training

Comparison with supervised approach: Require high-confidence pairs of image and weather condition

→ Existing dataset

Image2Wether[1]: Outdoor images labeled weather condition by human (i2w)

5 weather classes

sunny	70,501
cloudy	45,662
rain	1,252
snow	1,369
foggy	357

Divide to train : val : test = **59,319 : 59,321 : 500** \rightarrow For training *R*, *T* of supervised approach

test : 100 images for each class

train, val : Half of remaining for each class

Experiment①Evaluations of semi-supervised training

Increasing training data more than 3 times by semi-supervised approach resulted in the generator performance improved.

Experiment②Evaluations of image generation conditioned <u>on weather signals</u>

• Even if the weather class of \hat{O} is same, it is possible to express differences such as cloudcover.

 \rightarrow We realize conditional transform on weather signal.

Conclusion

- We proposed the conditional semi-supervised outdoor image generator.
- We confirmed the validity of semi-supervised approach.
- We realized the diverse image transformation by using the weather signal as input condition.