Semi-Supervised Outdoor Image Generation
Conditioned on Weather Signals

S. Kawakami, K. Okada, N. Nitta,
K. Nakamura, N. Babaguchi

Osaka university

ICPR 2020



Background & Goal

Weather signal

ind 5391997

time 1454598073

lon -122.4947002

lat 37.74699781

temp 281.59

hum 100
e Unintuitive data to understand * [Intuitive data to understand
e Spatio-temporal dense e Spatio-temporal sparse

Generating images which can tell weather situations at

Goal - arbitrary time and locations.
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Problems & Solution

Image translation needs a lot of pair outdoor images (input) and weather signals
(condition) as training data.

—>Collection source : SNS .
f Posted outdoor images ﬁ Captured time Posted time
e.g.)

% #l Comment : Today is very Clear!

Post time . YYYY/MM/DD
Post place : lat, lon

Comment : It’s going to rain...
—  Posttime : YYYY/MM/DD
- Post place : lat, lon

Mismatch r

\ J Captured place Posted place

It is hard to synchronize outdoor images with weather signals due to the
mismatch between the posted/captured time of images.

predict
Clear

Check Only a small . Semi-supervised method by using
consistency number of pairs only a small number of pairs
Temp |25.4 can be collected.

Rain 0.0 — Clear




Proposed Method

Step 1 Collection of training data ..
flickr

ElOpenWeatherMap

Step 3 Training of conditional outdoor
image generator
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STEP 3) Training of conditional outdoor image generator
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Semi-supervised training e
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Data collection result

.

Semi-supervised approach :A few of high-confidence pairs and a lot of outdoor images

>

Flicker & OpenWeatherMap
764,566 pairs

Check semantic consistency by comparing
condition predicted from outdoor image and

weather signals.

e

From the remaining data, remove outliers of

weather signals and duplicate images.

@

* High-confidence pairs (171,489 pairs)
train :val :test=2:2:1 - For training R, train(68,595 pairs)

* Low-confidence outdoor images (201,059 images) - Augmented : For training T of semi-supervised approach
.




Experiment(DEvaluations of semi-supervised training

Comparison with supervised approach: Require high-confidence pairs of image and
weather condition
— Existing dataset

Image2Wether[1]: Outdoor images labeled weather condition by human (i2w)

5 weather classes

sunny 70,501
cloudy 45,662
rain 1,252
snow 1,369
foggy 357

Divide to train : val : test =59,319 : 59,321 : 500 -> For training R, T of supervised approach

test : 100 images for each class

train, val : Half of remaining for each class 6

[1]:W.-T. Chu, X.-Y. Zheng, and D.-S. Ding, “Image2weather: A largescale image dataset for weather property estimation,” in Proc. IEEE International Conference on Multimedia Big Data, 2016, pp. 137-144.



Experiment(DEvaluations of semi-supervised training

supervised approach

Evaluation method
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Increasing training data more than 3 times by semi-supervised approach resulted
in the generator performance improved.

-500 | RE was trained by
validation set of 12W

SILLVYA 147 89 106 84 74

-400
SN 33 190 137 79 61
E 300
Sl 72 72 209 87 60
5 200
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Experiment@Evaluations of image generation
conditioned on weather signals

(e.g. |[Temp [25.4
Rain 0.01

Output images

Sunny Audy ‘ Foggy Outlier (88tha_h)

* Even if the weather class of O is same, it is possible to express differences such as cloudcover.

- We realize conditional transform on weather signal. 8



Conclusion

* We proposed the conditional semi-supervised outdoor image generator.
* We confirmed the validity of semi-supervised approach.

* We realized the diverse image transformation by using the weather
signal as input condition.



