
Recurrent Deep Attention Network for

Person Re-Identification

Changhao Wang1, Jun Zhou2 , Xianfei Duan2, Guanwen Zhang1*, Wei Zhou1

1 School of Electronics and Information, Northwestern Polytechnical University, Xi’an, China

2 CNPC logging Co.,Ltd, China

25th INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION

Milan, Italy 10 | 15 January 2021

January 10，2021



I. Introduction

II. The Proposed Method

III. Experiments

IV. Conclusions

CONTENTS

25th INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION

Milan, Italy 10 | 15 January 2021



Challenges in Person Re-Identification
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Cam1 Cam2 Cam1 Cam2

Labeled DetectedPerson1 Person2

◼ Dramatic changes on individual appearance

◼ Occluded

◼ Complicated background clutters

◼ Inaccurate bounding box
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◼ We propose an attention selection mechanism based

on reinforcement learning for person re-id task.

◼ The proposed model can focus on identity-sensitive

regions to build up internal cognition of individuals

progressively.
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An Overview of RDAN
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◼ A Baseline Module

◼ A Glimpse Module

◼ A Core Network

◼ An Action Network
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The Markov Decision Process

◼ State

◼ Action

◼ Reward

The hidden state 𝒉𝑡of the core network

The location 𝑙𝑡 produced by the locator
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⚫ Gradual Comparison Reward

𝑟𝑡
𝑖𝑑= ቊ

1, 𝑎𝑡 = 𝑦
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⚫ Identity Reward
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Optimization
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◼ Loss function for supervised learning

◼ Object function for reinforcement learning
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Experiment Results

Method
Market-1501 DukeMTMC-reID

Rank-1(%) mAP(%) Rank-1(%) mAP(%)

PCB[1] 92.3 77.4 81.9 65.3

PCB + RPP [1] 93.8 81.6 83.3 69.2

VPM [2] 93.0 80.8 83.6 72.6

HA-CNN [3] 91.2 75.7 80.5 63.8

Mancs [4] 93.1 82.3 84.9 71.8

CASN(IDE) [5] 92.0 78.0 84.5 67.0

CASN(PCB) [5] 94.4 82.8 87.7 73.7

RDAN 94.6 85.4 88.0 75.2
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Experiment Results

Method
CUHK03-NP(Detected) CUHK03-NP(Labeled)

Rank-1(%) mAP(%) Rank-1(%) mAP(%)

PCB [1] 61.3 54.2 - -

PCB + RPP [1] 63.7 57.5 - -

HA-CNN [3] 41.7 39.6 44.4 41.0

Mancs [4] 65.5 60.5 69.0 63.9

CASN(IDE) [5] 57.4 50.7 58.9 52.2

CASN(PCB) [5] 71.5 64.4 73.7 68.0

RDAN 69.5 64.5 74.2 69.4
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Ablation Study

Market-1501 DukeMTMC-reID

Rank-1(%) mAP(%) Rank-1(%) mAP(%)

IDE Baseline 90.0 77.5 83.0 68.4

𝐿𝑖𝑑 +Random Policy 92.5 82.0 86.1 71.8

𝐿𝑖𝑑 + 𝑟𝑡
𝑖𝑑 92.9 82.3 86.3 72.6

𝐿𝑖𝑑 + 𝑟𝑡
𝑟𝑐 93.9 84.4 87.4 74.7

𝐿𝑖𝑑 + 𝑟𝑡
𝑔𝑐

93.6 84.4 87.8 74.5

𝐿𝑖𝑑 + 𝐿𝑡𝑟𝑖 + 𝑟𝑡
𝑟𝑐 94.0 85.7 87.7 75.2

𝐿𝑖𝑑 + 𝐿𝑡𝑟𝑖 + 𝑟𝑡
𝑔𝑐

94.6 85.4 88.0 75.2
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Visualization
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CONCLUSION
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◼ we propose a Recurrent Deep Attention Network (RDAN) that embeds

convolutional architecture in recurrent attention model and propose an

attention selection mechanism based on reinforcement learning for person re-id.

◼ The proposed RDAN selects attention on the convolutional feature maps, and

combines global and local features together as the internal representation of

inputs.
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