

Recurrent Deep Attention Network for

Person Re-Identification

Changhao Wang¹, Jun Zhou², Xianfei Duan², Guanwen Zhang¹*, Wei Zhou¹

1 School of Electronics and Information, Northwestern Polytechnical University, Xi' an, China

2 CNPC logging Co.,Ltd, China

January 10, 2021

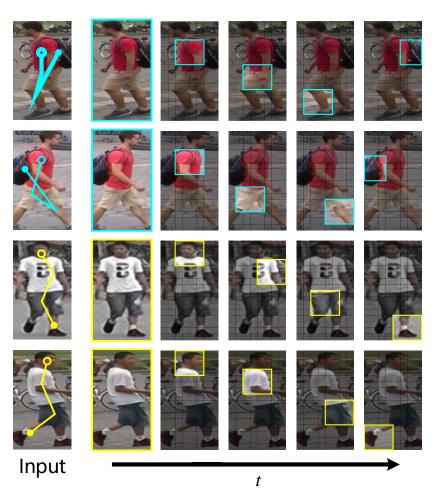
- I. Introduction
- **II.** The Proposed Method
- **III. Experiments**
- **IV. Conclusions**

Challenges in Person Re-Identification

- Dramatic changes on individual appearance
- Occluded
- Complicated background clutters
- Inaccurate bounding box

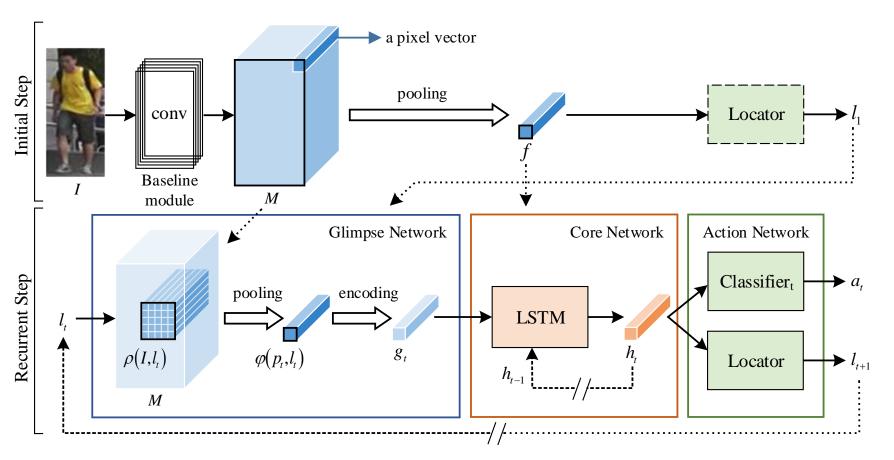
Our Solution

- We propose an attention selection mechanism based on reinforcement learning for person re-id task.
- The proposed model can focus on identity-sensitive regions to build up internal cognition of individuals progressively.



An Overview of RDAN

- A Baseline Module
- A Glimpse Module
- A Core Network
- An Action Network



The Markov Decision Process

State The hidden state h_t of the core network

Action The location l_t produced by the locator

Reward r_t^{id} , r_t^{rc} , r_t^{gc}

 $\frac{\text{Identity Reward}}{r_t^{id}} = \begin{cases} 1, a_t = y \\ 0, a_t \neq y \end{cases}$

- <u>Relative Comparison Reward</u> $r_t^{rc} = d_t^{a,n} - d_t^{a,p}$
- <u>Gradual Comparison Reward</u> $r_t^{gc} = (d_t^{a,n} - d_t^{a,p}) - (d_{t-1}^{a,n} - d_{t-1}^{a,p})$

where, $d_t^{a,p} = \| \boldsymbol{h}_t^a - \boldsymbol{h}_t^n \|_2$, $d_t^{a,n} = \| \boldsymbol{h}_t^a - \boldsymbol{h}_t^n \|_2$

Optimization

Loss function for supervised learning

$$L_{id} = -\sum_{t=1}^{T} \sum_{i=1}^{N} 1\{i = y\} \log P_t^i$$
$$L_{tri} = \sum_{t=1}^{T} \max((d_t^{a,p} - d_t^{a,n} + \alpha), 0)$$

Object function for reinforcement learning

$$J(\theta) = \mathbb{E}_{\pi}[R] = \mathbb{E}_{\pi}[\sum_{t=1}^{T} r_t]$$

Experiment Results

Method	Market-1501		DukeMTMC-reID	
	Rank-1(%)	mAP(%)	Rank-1(%)	mAP(%)
PCB[1]	92.3	77.4	81.9	65.3
PCB + RPP [1]	93.8	81.6	83.3	69.2
VPM [2]	93.0	80.8	83.6	72.6
HA-CNN [3]	91.2	75.7	80.5	63.8
Mancs [4]	93.1	82.3	84.9	71.8
CASN(IDE) [5]	92.0	78.0	84.5	67.0
CASN(PCB) [5]	94.4	82.8	87.7	73.7
RDAN	94.6	85.4	88.0	75.2

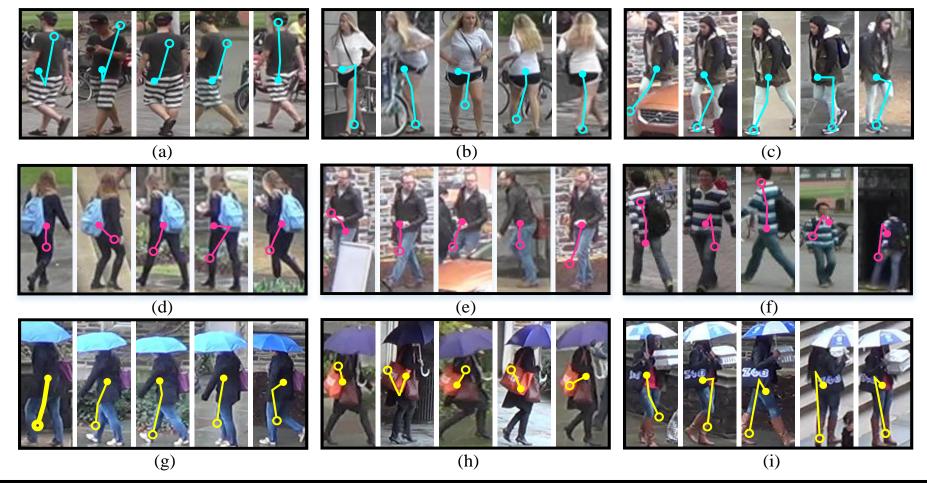
Experiment Results

Method	CUHK03-NP(Detected)		CUHK03-NP(Labeled)	
	Rank-1(%)	mAP(%)	Rank-1(%)	mAP(%)
PCB [1]	61.3	54.2	-	-
PCB + RPP [1]	63.7	57.5	-	-
HA-CNN [3]	41.7	39.6	44.4	41.0
Mancs [4]	65.5	60.5	69.0	63.9
CASN(IDE) [5]	57.4	50.7	58.9	52.2
CASN(PCB) [5]	71.5	64.4	73.7	68.0
RDAN	69.5	64.5	74.2	69.4

Ablation Study

	Market-1501		DukeMTMC-relD	
	Rank-1(%)	mAP(%)	Rank-1(%)	mAP(%)
IDE Baseline	90.0	77.5	83.0	68.4
L_{id} +Random Policy	92.5	82.0	86.1	71.8
$L_{id} + r_t^{id}$	92.9	82.3	86.3	72.6
$L_{id} + r_t^{rc}$	93.9	84.4	87.4	74.7
$L_{id} + r_t^{gc}$	93.6	84.4	87.8	74.5
$L_{id} + L_{tri} + r_t^{rc}$	94.0	85.7	87.7	75.2
$L_{id} + L_{tri} + r_t^{gc}$	94.6	85.4	88.0	75.2

Visualization



25th INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION Milan, Italy 10 | 15 January 2021

- we propose a Recurrent Deep Attention Network (RDAN) that embeds convolutional architecture in recurrent attention model and propose an attention selection mechanism based on reinforcement learning for person re-id.
- The proposed RDAN selects attention on the convolutional feature maps, and combines global and local features together as the internal representation of inputs.

[1] Y. Sun, L. Zheng, Y. Yang, Q. Tian, and S. Wang, "Beyond part models: Person retrieval with refined part pooling (and A strong convolutional baseline)," in ECCV, 2018, pp. 501–518.

[2] Y. Sun, Q. Xu, Y. Li, C. Zhang, Y. Li, S. Wang, and J. Sun, "Perceive where to focus: Learning visibility-aware part-level features for partial person re-identification," in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 393–402.

[3] W. Li, X. Zhu, and S. Gong, "Harmonious attention network for person re-identification," in 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pp. 2285–2294.

[4] C. Wang, Q. Zhang, C. Huang, W. Liu, and X. Wang, "Mancs: A multi-task attentional network with curriculum sampling for person reidentification," in ECCV, 2018, pp. 384–400.

[5] M. Zheng, S. Karanam, Z. Wu, and R. J. Radke, "Re-identification with consistent attentive siamese networks," in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 5735–5744.

THANK YOU FOR WATCHING

25th INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION Milan, Italy 10 | 15 January 2021