

Flow-guided Spatial Attention Tracking for Egocentric Activity Recognition

Tianshan Liu and Kin-Man Lam International Conference on Pattern Recognition

Department of Electronic and Information Engineering The Hong Kong Polytechnic University

Outline

- Introduction
- Methodology
- Experiments
- Conclusion

Introduction

- Egocentric Activity Recognition
- ✓ Wide range of real-world applications
- ✓ Invisibility of camera wearer & Ego-motion
- ✓ Identify hand motion patterns & manipulated objects

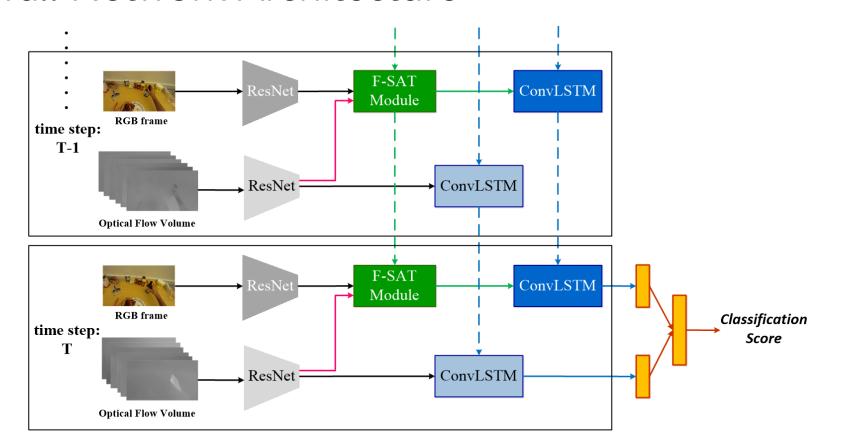
Introduction

- ► Related Work
- ✓ Leveraging large-scale fine-grained annotations
 - Gaze information [1]
 - Hand segmentation and object localization [2]
- \checkmark Attention mechanisms
 - Ego-RNN (spatial attention) [3]
 - LSTA (sequential attention) [4]

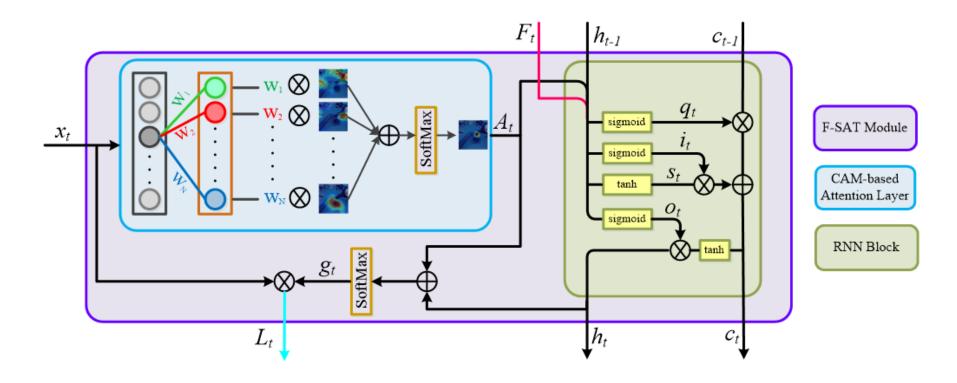
Introduction

- Contributions
- We propose a flow-guided spatial attention tracking (F-SAT) module, to highlight the discriminative features from relevant regions across frames.
- ✓ We insert the proposed F-SAT module into a two-branch-based architecture, to provide complementary information.
- \checkmark Evaluation on three public egocentric activity data sets.

Overall Network Architecture



Flow-guided Spatial Attention Tracking Module



Methodology

Flow-guided Spatial Attention Tracking Module

• Class activation map (CAM) [5]:

$$\mathbf{A}_t^c(i) = \sum_{n=1}^N w_n^c \, \mathbf{x}_t^n(i)$$

• Flow signal integrated RNN unit:

$$(\mathbf{i}_{t}, \mathbf{o}_{t}, \mathbf{q}_{t}, \mathbf{s}_{t}) = (\sigma, \sigma, \sigma, \eta)(\mathbf{W} * \mathbf{A}_{t} + \mathbf{U} * \mathbf{F}_{t} + \mathbf{V} * \mathbf{h}_{t-1} + \mathbf{b})$$
$$\mathbf{c}_{t} = \mathbf{i}_{t} \odot \mathbf{s}_{t} + \mathbf{q}_{t} \odot \mathbf{c}_{t-1}$$
$$\mathbf{h}_{t} = \mathbf{o}_{t} \odot \eta \ (\mathbf{c}_{t})$$

Datasets

- GTEA 61 : 61 activity classes
- GTEA 71 : 71 activity classes
- EGTEA Gaze+: 10,325 samples & 106 activity classes

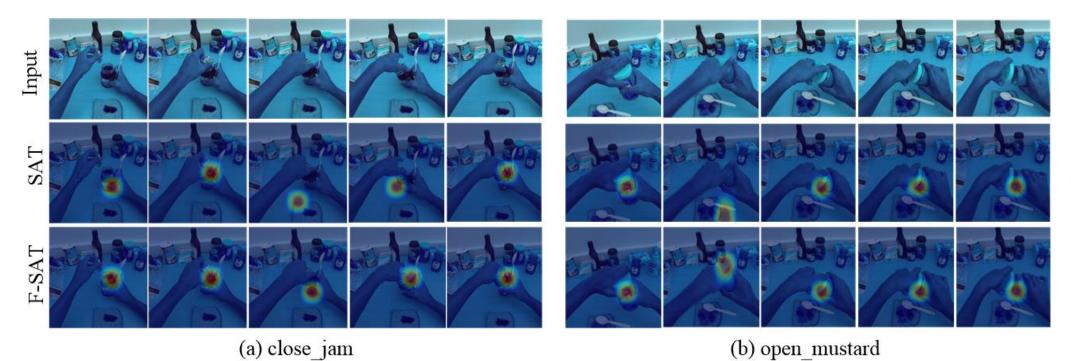
Ablation Study

- ✓ Effectiveness of the F-SAT module
- ✓ Effectiveness of multi-branch fusion

Ablation Setting	Accuracy (%)
Motion branch	46.72
Appearance branch	51.68
Appearance branch (SAT)	73.92
Appearance branch (F-SAT)	78.16
Two-branch (F-SAT)	81.29

Table I Ablation experiment results on the GTEA 61 data set.

- Ablation Study
- \checkmark Visualization of the attention maps generated by SAT and F-SAT



Comparison with State-of-the-Art Methods

Methods	GTEA 61	GTEA 71	EGTEA Gaze+
DEA [24]	64.00	62.10	46.50
Action+object-Net [7]	73.02	73.24	-
Two-stream model [26]	51.58	49.65	41.84
TSN [25]	69.33	67.23	55.93
EleAttG [21]	66.67	60.83	57.01
Ego-RNN [11]	79.00	77.00	60.76
LSTA-two stream [12]	80.01	78.14	61.86
SAP [22]	-	-	62.70
F-SAT-two stream	81.29	79.02	62.78

Table II Comparison results on three egocentric activity data sets.

Conclusion

- The proposed F-SAT module is capable of localizing the discriminative features from relevant regions across the frames, by exploring temporal context and integrating optical flow as a guidance signal.
- ✓ We validate the practical effectiveness of the F-SAT module by inserting it into a two-branch-based CNN-LSTM network.

References

[1] Y. Li, M. Liu, and J. M. Rehg, "In the Eye of Beholder: Joint Learning of Gaze and Actions in First Person Video," *European Conference on Computer Vision (ECCV)*, 2018, pp. 639–655.

[2] M. Ma, H. Fan, and K. M. Kitani, "Going Deeper into First-Person Activity Recognition," *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2016, pp. 1894–1903.

[3] S. Sudhakaran and O. Lanz, "Attention is All We Need: Nailing Down Object-centric Attention for Egocentric Activity Recognition," *British Machine Vision Conference (BMVC)*, 2018.

[4] S. Sudhakaran, S. Escalera, and O. Lanz, "LSTA: Long Short-Term Attention for Egocentric Action Recognition," *IEEE Conference on Computer Vision and Pattern Recognition* (*CVPR*), 2019, pp. 9946–9955.

Thank You!