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Introduction

» Egocentric Activity Recognition

v Wide range of real-world applications
v" Invisibility of camera wearer & Ego-motion

v" |dentify hand motion patterns & manipulated objects
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Introduction
> Related Work

v' Leveraging large-scale fine-grained annotations
* Gaze information [1]
* Hand segmentation and object localization [2]

v Attention mechanisms
* Ego-RNN (spatial attention) [3]
* LSTA (sequential attention) [4]
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Introduction
» Contributions

v" We propose a flow-guided spatial attention tracking (F-SAT) module,
to highlight the discriminative teatures from relevant regions across

frames.

v We insert the proposed F-SAT module into a two-branch-based
architecture, to provide complementary information.

v" Evaluation on three public egocentric activity data sets.
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Methodology

» Overall Network Architecture
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Methodology
» Flow-guided Spatial Attention Tracking Module

il ™
F-SAT Module
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CAM-based
Attention Layer
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Methodology
» Flow-guided Spatial Attention Tracking Module

* Class activation map (CAM) [5]:

N
AS(D) = ) wixE(Q)
n=1

* Flow signal integrated RNN unit:
(1,04 q:,S¢) = (0,0,00n)(W*xA; +U*F, +V=xh;,_; +b)
¢ =108 + q;Oc,_4
h; = 0,01 (c¢)
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Experiments
» Datasets

* GTEA 61 : 61 activity classes
* GTEA 71: 71 activity classes
* EGTEA Gaze+: 10,325 samples & 106 activity classes

EGTEA Gazet+t GTEA
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Experlments

» Ablation Study

v’ Effectiveness of the F-SAT module
v’ Effectiveness of multi-branch fusion

Table I Ablation experiment results on the GTEA 61 data set.

Ablation Setting Accuracy (%)
Motion branch 46.72
Appearance branch 51.68
Appearance branch (SAT) 73.92
Appearance branch (F-SAT) 78.16

Two-branch (F-SAT) 81.29




Q THE HONG KONG
?zb POLYTECHNIC UNIVERSITY

e B TR AR

Experiments
»> Ablation Study

v Visualization of the attention maps generated by SAT and F-SAT
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Experiments

» Comparison with State-of-the-Art Methods

Table Il Comparison results on three egocentric activity data sets.

Methods GTEA 61 GTEA 71 EGTEA Gaze+

DEA [24] 64.00 62.10 46.50
Action+object-Net [7] 73.02 73.24 -

Two-stream model [26] 51.58 49.65 41.84
TSN [25] 69.33 67.23 55.93
EleAttG [21] 66.67 60.83 57.01
Ego-RNN [11] 79.00 77.00 60.76
LSTA-two stream [12] 80.01 78.14 61.86
SAP [22] - - 62.70
F-SAT-two stream 81.29 79.02 62.78
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Conclusion

v The proposed F-SAT module is capable of localizing the
discriminative features from relevant regions across the frames,
by exploring temporal context and integrating optical flow as a
guidance signal.

v We validate the practical effectiveness of the F-SAT module by
Inserting It into a two-branch-based CNN-LSTM network.
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Thank You!
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